G ra p h S 3 I I CS 2110, Spring 2015

Where did | leave that book?

http://www.geahvet.com

Where did | leave that book?

http://www.geahvet.com

Where did | leave that book?

:) .
A AN
1’. E | 1P % : 28 g » ‘”l.. .
g ‘\ :'i 1,. ‘ =i ‘

Go as far down a path as
@ p055|ble before backtracking —
Depth-First Search

http://www.geahvet.com

Graph Algorithms

e Search
— Depth-first search
— Breadth-first search

* Shortest paths
— Dijkstra's algorithm

* Minimum spanning trees
— Prim's algorithm
— Kruskal's algorithm

Representations of Graphs

1. 7T2
/ 8
4 =3
Adjacency List Adjacency Matrix
1 0 1 0 1
3o o |o Jo
4 0 1 1 0
BN

Adjacency Matrix or Adjacency List?

* Definitions:
— n = number of vertices
— m = number of edges
— d(u) = degree of u = number of edges leaving u
* Adjacency Matrix
— Uses space O(n?)
— Can iterate over all edges in time O(#?)
— Can answer “Is there an edge from u to v?” in O(1) time
— Better for dense graphs (lots of edges)
* Adjacency List
— Uses space O(m + n)
— Can iterate over all edges in time O(m + n)
— Can answer “Is there an edge from 1 to v?” in O(d(u)) time
— Better for sparse graphs (fewer edges)

Depth-First Search

* Given a graph and one of its nodes u

(say node 1 below)

Depth-First Search

* Given a graph and one of its nodes u

(say node 1 below)

e We want to “visit” each node reachable from u
(nodes 1,0, 2, 3, 5)

There are many paths
to some nodes.

How do we visit all
nodes efficiently,
without doing extra
work?

Depth-First Search

boolean|] visited;

. Nod'e'u is visited means: .V|.S|ted[u] is true Suppose all nodes
 To visit u means to: set visited[u] to true are unvisited.

e Nodevis REACHABLE from node u if there
is a path (u, ..., v) in which all nodes of the path
are unvisited.

Depth-First Search

boolean|] visited;

* Node uis visited means: visited[u] is true
 To visit u means to: set visited[u] to true

e Nodevis REACHABLE from node u if there
is a path (u, ..., v) in which all nodes of the path
are unvisited.

Suppose all nodes
are unvisited.

Nodes REACHABLE
from node 1:
{1,0, 2, 3, 5}

Depth-First Search

boolean|] visited;

* Node uis visited means: visited[u] is true
 To visit u means to: set visited[u] to true

e Nodevis REACHABLE from node u if there
is a path (u, ..., v) in which all nodes of the path
are unvisited.

Suppose all nodes
are unvisited.

Nodes REACHABLE
from node 1:
{1,0, 2, 3, 5}

Nodes REACHABLE
from 4: {4, 5, 6}

Depth-First Search

boolean|] visited;

 Node uis visited means: visited[u] is true Green: visited
 To visit u means to: set visited[u] to true Blue: unvisited

e Nodevis REACHABLE from node u if there
is a path (u, ..., v) in which all nodes of the path
are unvisited.

Depth-First Search

boolean|] visited;

* Node uis visited means: visited[u] is true
 To visit u means to: set visited[u] to true

e Nodevis REACHABLE from node u if there
is a path (u, ..., v) in which all nodes of the path
are unvisited.

Green: visited
Blue: unvisited

Nodes REACHABLE
from node 1:
{1, 0, 5}

Depth-First Search

boolean|] visited;

 Node uis visited means: visited[u] is true Green: visited

 To visit u means to: set visited[u] to true Blue: unvisited
e Nodevis REACHABLE from node u if there
is a path (u, ..., v) in which all nodes of the path Nodes REACHABLE

are unvisited. s L

{1, 0, 5}

Nodes REACHABLE
from 4: none

Not even 4 itself, because
it’s already been visited!

Depth-First Search

/** Node u is unvisited. Visit all nodes

that are REACHABLE from u. */ EEU[oE

public static void dfs(int u) { The nodes
REACHABLE from 1
are1,0,2,3,5

) Start

Depth-First Search

/** Node u is unvisited. Visit all nodes
that are REACHABLE from u. */

public static void dfs(int u) {

Let u be 1

The nodes
REACHABLE from 1
are1,0, 2,3,5

Depth-First Search

/** Node u is unvisited. Visit all nodes
that are REACHABLE from u. */

public static void dfs(int u) {
visited[u] = true;

Let u be 1

The nodes
REACHABLE from 1
are1,0, 2,3,5

Depth-First Search

/** Node u is unvisited. Visit all nodes
that are REACHABLE from u. */

public static void dfs(int u) { The nodes to be
visited[u] = true; visited are 0, 2, 3, 5

Let u be 1 (visited)

Depth-First Search

/** Node u is unvisited. Visit all nodes
that are REACHABLE from u. */

public static void dfs(int u) { The nodes to be
visited[u] = true; visited are 0, 2, 3, 5

Let u be 1 (visited)

for all edges (u, v) leaving u:
Have to do DFS on

if v is unvisited then dfs(v); all unvisited
} neighbors of ul!

Depth-First Search

/** Node u is unvisited. Visit all nodes

that are REACHABLE from u. */ lSuppo's(.e Al s
oop Visits
public static void dfs(int u) { neighbors in
visited[u] = true; numerical order.

Then dfs(1) visits

e . the nodes in this
if v is unvisited then dfs(v); order: 1 .

\ sl

for all edges (u, v) leaving u:

Depth-First Search

/** Node u is unvisited. Visit all nodes

that are REACHABLE from u. */ |5uppo§g Al s
oop Visits
public static void dfs(int u) { neighbors in
visited[u] = true; numerical order.

Then dfs(1) visits

e . the nodes in this
if v is unvisited then dfs(v); order: 1,0 ...

for all edges (u, v) leaving u:

Depth-First Search

/** Node u is unvisited. Visit all nodes

that are REACHABLE from u. */ IS”ppo.S? Al s
oop Visits
public static void dfs(int u) { neighbors in
visited[u] = true; numerical order.

Then dfs(1) visits

e . the nodes in this
if v is unvisited then dfs(v); slEne il 1%

for all edges (u, v) leaving u:

Depth-First Search

/** Node u is unvisited. Visit all nodes

that are REACHABLE from u. */ IS”ppo.S? Al s
oop Visits
public static void dfs(int u) { neighbors in
visited[u] = true; numerical order.

Then dfs(1) visits

e . the nodes in this
if v is unvisited then dfs(v); selEr i@ 7 5

for all edges (u, v) leaving u:

Depth-First Search

/** Node u is unvisited. Visit all nodes

that are REACHABLE from u. */ IS”ppO.S’? Al s
oop Visits
public static void dfs(int u) { neighbors in
visited[u] = true; numerical order.

Then dfs(1) visits

e . the nodes in this
if v is unvisited then dfs(v); SieiEr il @) 7 2 =

for all edges (u, v) leaving u:

Depth-First Search

/** Node u is unvisited. Visit all nodes
that are REACHABLE from u. */

public static void dfs(int u) {
visited[u] = true;
for all edges (u, v) leaving u:
if v is unvisited then dfs(v);

}

Suppose n nodes are REACHABLE along e
edges (in total). What is

 Worst-case execution?

 Worst-case space?

Depth-First Search

/** Node u is unvisited. Visit all nodes
that are REACHABLE from u. */

public static void dfs(int u) {
visited[u] = true;
for all edges (u, v) leaving u:
if v is unvisited then dfs(v);

}

Example: Use different way (other than array
visited) to know whether a node has been visited

Example: We really haven’t said what data
structures are used to implement the graph

That’s all there is to
basic DFS. You may
have to change it to
fit a particular
situation.

If you don’t have
this spec and you
do something
different, it’'s
probably wrong.

Depth-First Search in OO fashion

public class N.o.de { Each node of the
boolean visited; graph is an object
List<Node> neighbors; of type Node

/** This node is unvisited. Visit all nodes
REACHABLE from this node */
public void dfs() { < No need for a
visited= true; parameter. The
for (Node n: neighbors) { object is the node.
if (In.visited) n.dfs();

}

Depth-First Search written iteratively

/** Node u is unvisited. Visit all nodes REACHABLE from u. */

public static void dfs(int u) {
Stack s= (u); // Not Java!
// inv: all nodes that have to be visited are

// REACHABLE from some node in s
while (s is not empty) {
u=s.pop(); // Remove top stack node, putin u
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);

Depth-First Search written iteratively

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void dfs(int u) {

Stack s= (u); Call dfs(1) |
while (s is not empty) {
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);

1
Stack s

Depth-First Search written iteratively

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void dfs(int u) {

Stack s= (u); Call dfs(1) . lteration O
while (s is not empty) {
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);

1
Stack s

Depth-First Search written iteratively

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void dfs(int u) {

Stack s= (u); Call dfs(1) . lteration O
while (s is not empty) {
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);

Stack s

Depth-First Search written iteratively

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void dfs(int u) {

Stack s= (u); Call dfs(1) | lterationO
while (s is not empty) {
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);

Stack s

Depth-First Search written iteratively

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void dfs(int u) {

Stack s= (u); Call dfs(1) | lterationO
while (s is not empty) {
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);
i 0
I 2
5

Stack s

Depth-First Search written iteratively

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void dfs(int u) {

Stack s= (u); Call dfs(1) | lteration1
while (s is not empty) {
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);
i 0
I 2
5

Stack s

Depth-First Search written iteratively

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void dfs(int u) {

Stack s= (u); Call dfs(1) | lteration1
while (s is not empty) {
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);
}
i 2
5

Stack s

Depth-First Search written iteratively

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void dfs(int u) {

Stack s= (u); Call dfs(1) | Iteration1
while (s is not empty) {
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);
}
i 2
5

Stack s

Depth-First Search written iteratively

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void dfs(int u) {

Stack s= (u); Call dfs(1) | Iteration 2
while (s is not empty) {
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);
}
i 2
5

Stack s

Depth-First Search written iteratively

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void dfs(int u) {

Stack s= (u); Call dfs(1) | Iteration 2
while (s is not empty) {
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);

5
Stack s

Depth-First Search written iteratively

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void dfs(int u) {

Stack s= (u); Call dfs(1) | Iteration 2
while (s is not empty) {
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);

5
Stack s

Depth-First Search written iteratively

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void dfs(int u) {

Stack s= (u); Call dfs(1) Iteration 2
while (s is not empty) {
u= s.pop(); N Yes, 5 is put on the
if (u ha.s; not been visited) { stack twice, once for
visit u; : .
for each edge (u, v) leaving u: te)ach e'dgde tollt' It will
s.push(v); Ewslte__o_n y once.
} 3
} 5
5

Stack s

Breadth-First Search

/** Node u is unvisited. Visit all nodes REACHABLE from u. */

public static void bfs(int u) {
Queue g= (u); // Not Java!
// inv: all nodes that have to be visited are
// REACHABLE from some node in s
while (g is not empty) {
u= q.popFirst(); // Remove first node in queue, putin u
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
g.append(v); // Add to end of queue

Breadth-First Search

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void bfs(int u) {
Queue g= (u); Call be(l) I
while g is not empty) {
u= q.popFirst();

if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
g.append(v);

Breadth-First Search

/** Node u is unvisited. Visit all nodes REACHABLE from u. */

public static void bfs(int u) {
Queue g= (u); Call bfs(1) | Iteration O

while g is not empty) {
u= g.popFirst();

if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
g.append(v);

Breadth-First Search

/** Node u is unvisited. Visit all nodes REACHABLE from u. */

public static void bfs(int u) {
Queue g= (u); Call bfs(1) | Iteration O

while g is not empty) {
u= g.popFirst();

if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
g.append(v);

Queue q

Breadth-First Search

/** Node u is unvisited. Visit all nodes REACHABLE from u. */

public static void bfs(int u) {
Queue g= (u); Call bfs(1) | Iteration O

while g is not empty) {
u= g.popFirst();

if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
g.append(v);

Queue q

Breadth-First Search

/** Node u is unvisited. Visit all nodes REACHABLE from u. */

public static void bfs(int u) {
Queue g= (u); Call bfs(1) | Iteration O

while g is not empty) {
u= g.popFirst();

if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
g.append(v);

02
Queue q

Breadth-First Search

/** Node u is unvisited. Visit all nodes REACHABLE from u. */

public static void bfs(int u) {
Queue g= (u); Call bfs(1) | Iteration 1

while g is not empty) {
u= g.popFirst();

if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
g.append(v);

02
Queue q

Breadth-First Search

/** Node u is unvisited. Visit all nodes REACHABLE from u. */

public static void bfs(int u) {
Queue g= (u); Call bfs(1) | Iteration 1

while g is not empty) {
u= g.popFirst();

if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
g.append(v);

Breadth-First Search

/** Node u is unvisited. Visit all nodes REACHABLE from u. */

public static void bfs(int u) {
Queue g= (u); Call bfs(1) | Iteration 1

while g is not empty) {
u= g.popFirst();

if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
g.append(v);

Breadth-First Search

/** Node u is unvisited. Visit all nodes REACHABLE from u. */

public static void bfs(int u) {
Queue g= (u); Call bfs(1) | Iteration 1

while g is not empty) {
u= g.popFirst();

if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
g.append(v);

27
Queue q

Breadth-First Search

/** Node u is unvisited. Visit all nodes REACHABLE from u. */

public static void bfs(int u) {
Queue g= (u); Call bfs(1) | Iteration 2

while g is not empty) {
u= g.popFirst();

if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
g.append(v);

27
Queue q

Breadth-First Search

/** Node u is unvisited. Visit all nodes REACHABLE from u. */

public static void bfs(int u) {
Queue g= (u); Call bfs(1) | Iteration 2

while g is not empty) {
u= g.popFirst();

if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
g.append(v);

Breadth-First Search

/** Node u is unvisited. Visit all nodes REACHABLE from u. */

public static void bfs(int u) {
Queue g= (u); Call bfs(1) | Iteration 2

while g is not empty) {
u= g.popFirst();

if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
g.append(v);

Breadth-First Search

/** Node u is unvisited. Visit all nodes REACHABLE from u. */

public static void bfs(int u) {
Queue g= (u); Call bfs(1) | Iteration 2

while g is not empty) {
u= q.popFirst();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
g.append(v);

Breadth first:

(1) Node u

(2) All nodes 1 edge from u
(3) All nodes 2 edges from u
(4) All nodes 3 edges from u

735
Queue q

