GraphS ¢ ” €S12110, Spring 2015

S

Where did | leave that book?

Where did | leave that book?

Where did | leave that book?

R,
N

Go as far down a path as |

possible before backtracking —
Depth-First Search

Graph Algorithms

* Search
— Depth-first search
— Breadth-first search
* Shortest paths
— Dijkstra's algorithm
* Minimum spanning trees
— Prim's algorithm
— Kruskal's algorithm

Representations of Graphs

1 2
4 3
Adjacency List Adjacency Matrix

v o [o [~ I~
e o |- |o |
s o o |- |~

AW oN e

Adjacency Matrix or Adjacency List?

* Definitions:
— n=number of vertices
— m =number of edges
— d(u) = degree of u = number of edges leaving u
* Adjacency Matrix
— Uses space O(n?)
— Can iterate over all edges in time O(n?)
— Can answer “Is there an edge from u to v?” in O(1) time
— Better for dense graphs (lots of edges)
* Adjacency List
— Uses space O(m + n)
— Can iterate over all edges in time O(m + n)
— Can answer “Is there an edge from u to v?” in O(d(x)) time
— Better for sparse graphs (fewer edges)

Depth-First Search

* Given a graph and one of its nodes u
(say node 1 below)

Depth-First Search

* Given a graph and one of its nodes u
(say node 1 below)

* We want to “visit” each node reachable from u
(nodes 1,0, 2, 3,5)

There are many paths
to some nodes.

How do we visit all
nodes efficiently,
without doing extra
work?

Depth-First Search

boolean[] visited;

* Node u is visited means: visited[u] is true
* To visit u means to: set visited[u] to true
* Node v is REACHABLE from node u if there

is a path (u, ..., v) in which all nodes of the path
are unvisited.

Suppose all nodes
are unvisited.

Depth-First Search

boolean[] visited;

* Node u is visited means: visited[u] is true Suppose all nodes
* To visit u means to: set visited[u] to true are unvisited.
* Node v is REACHABLE from node u if there

is a path (u, ..., v) in which all nodes of the path Nodes REACHABLE

are unvisited. from node 1:

{1,0,2,3,5}

Depth-First Search

boolean[] visited;

* Node u is visited means: visited[u] is true
* To visit u means to: set visited[u] to true
* Node v is REACHABLE from node u if there

is a path (u, ..., v) in which all nodes of the path Nodes REACHABLE
are unvisited.

Suppose all nodes
are unvisited.

from node 1:
1@, 2,3, 51

Nodes REACHABLE
from 4: {4, 5, 6}

Depth-First Search

boolean[] visited;

* Node u is visited means: visited[u] is true
* To visit u means to: set visited[u] to true

* Node v is REACHABLE from node u if there

is a path (u, ..., v) in which all nodes of the path

are unvisited.

o

Green: visited
Blue: unvisited

Depth-First Search

boolean[] visited;

* Node u is visited means: visited[u] is true
* To visit u means to: set visited[u] to true
* Node v is REACHABLE from node u if there

is a path (u, ..., v) in which all nodes of the path
are unvisited.

Green: visited
Blue: unvisited

Nodes REACHABLE
from node 1:
{1,0, 5}

Depth-First Search

boolean[] visited;

* Node u is visited means: visited[u] is true
* To visit u means to: set visited[u] to true

* Node v is REACHABLE from node u if there
is a path (u, ..., v) in which all nodes of the path
are unvisited.

o

Green: visited
Blue: unvisited

Nodes REACHABLE
from node 1:
{1,0, 5}

Nodes REACHABLE
from 4: none

Not even 4 itself, because
it's already been visited!

Depth-First Search

/** Node u is unvisited. Visit all nodes
that are REACHABLE from u. */

public static void dfs(int u) {

Letube 1

The nodes
REACHABLE from 1
are1,0,2,3,5

Depth-First Search

/** Node u is unvisited. Visit all nodes
that are REACHABLE from u. */

public static void dfs(int u) {

Letube 1

The nodes
REACHABLE from 1
are1,0,2,3,5

Depth-First Search

/** Node u is unvisited. Visit all nodes
that are REACHABLE from u. */

public static void dfs(int u) {
visited[u] = true;

Letube 1

The nodes
REACHABLE from 1
are1,0,2,3,5

Depth-First Search

/** Node u is unvisited. Visit all nodes
that are REACHABLE from u. */

public static void dfs(int u) { The nodes to be
visited are 0, 2, 3,5

Let u be 1 (visited)

visited[u] = true;

Depth-First Search

/** Node u is unvisited. Visit all nodes
that are REACHABLE from u. */

public static void dfs(int u) { The nodes to be
visited[u] = true; visited are 0, 2, 3, 5

Let u be 1 (visited)

for all edges (u, v) leaving u:

Have to do DFS on
if v is unvisited then dfs(v);

all unvisited
} neighbors of u!

Depth-First Search

/** Node u is unvisited. Visit all nodes

that are REACHABLE from u. */ Suppose the for

loop visits

public static void dfs(int u) { neighbors in
visited[u] = true; numerical order.
. Then dfs(1) visits
for all edges (u, v) leaving u:
o & (.) gu the nodes in this
if v is unvisited then dfs(v); order: 1 ..

Depth-First Search

/** Node u is unvisited. Visit all nodes

that are REACHABLE from u. */ puppose the for
loop visits

public static void dfs(int u) { neighbors in
visited[u] = true; numerical order.
. Then dfs(1) visits

for all edges (u, v) leaving u:

o & (.) & the nodes in this

if v is unvisited then dfs(v); order: 1,0...

Depth-First Search

/** Node u is unvisited. Visit all nodes

that are REACHABLE from u. */ ls”pp°.$? Ua2iier
oop visits
public static void dfs(int u) { neighbors in
visited[u] = true; numerical order.

Then dfs(1) visits

P . the nodes in this
if v is unvisited then dfs(v); order:1,0,2 ..

for all edges (u, v) leaving u:

Depth-First Search

/** Node u is unvisited. Visit all nodes

that are REACHABLE from u. */ f”p'”.s? Uiz
loop visits
public static void dfs(int u) { neighbors in
visited[u] = true; numerical order.

Then dfs(1) visits

P . the nodes in this
if vis unvisited then dfs(v); order:1,0,2,3 ...

for all edges (u, v) leaving u:

Depth-First Search

/** Node u is unvisited. Visit all nodes
that are REACHABLE from u. */

public static void dfs(int u) {
visited[u] = true;
for all edges (u, v) leaving u:
if v is unvisited then dfs(v);

Suppose the for
loop visits
neighbors in
numerical order.
Then dfs(1) visits
the nodes in this
order:1,0,2,3,5

Depth-First Search

/** Node u is unvisited. Visit all nodes
that are REACHABLE from u. */

public static void dfs(int u) {
visited[u] = true;
for all edges (u, v) leaving u:
if v is unvisited then dfs(v);

}

Suppose n nodes are REACHABLE along e
edges (in total). What is

* Worst-case execution?

* Worst-case space?

Depth-First Search

/** Node u is unvisited. Visit all nodes
that are REACHABLE from u. */

public static void dfs(int u) {
visited[u] = true;
for all edges (u, v) leaving u:
if v is unvisited then dfs(v);
}

Example: Use different way (other than array
visited) to know whether a node has been visited

Example: We really haven’t said what data
structures are used to implement the graph

That’s all there is to
basic DFS. You may
have to change it to
fit a particular
situation.

If you don’t have
this spec and you
do something
different, it’s

probably wrong.

Depth-First Search in OO fashion

public class Node {
boolean visited;
List<Node> neighbors;

Each node of the
graph is an object
of type Node

/** This node is unvisited. Visit all nodes
REACHABLE from this node */
public void dfs() { < No need fora
visited= true; parameter. The
for (Node n: neighbors) { object is the node.
if (In.visited) n.dfs();
}

Depth-First Search written iteratively

/** Node u is unvisited. Visit all nodes REACHABLE from u. */

public static void dfs(int u) {
Stack s= (u); // Not Java!

// inv: all nodes that have to be visited are
// REACHABLE from some node in s

while (s is not empty) {

u=s.pop(); // Remove top stack node, putin u

if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);

Depth-First Search written iteratively

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void dfs(int u) {
Stack s= (u); Call dfs(1)
while (s is not empty) {
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);

1
Stack s

Depth-First Search written iteratively

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void dfs(int u) {

Stack s= (u); Call dfs(1) Iteration 0
while (s is not empty) {
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);
}
}
1
Stack s

Depth-First Search written iteratively

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void dfs(int u) {

Stack s= (u); Call dfs(1) | Iteration 0
while (s is not empty) {
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);

Stack s

Depth-First Search written iteratively

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void dfs(int u) {
Stack s= (u); Call dfs(1) | Iteration O
while (s is not empty) {
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);

Stack s

Depth-First Search written iteratively

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void dfs(int u) {

Stack s= (u); Call dfs(1) | Iteration 0
while (s is not empty) {
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);
} 0
} 2
5
Stack s

Depth-First Search written iteratively

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void dfs(int u) {

Stack s= (u); Call dfs(1) | Iteration 1
while (s is not empty) {
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);
} 0
} 2
5

Stack s

Depth-First Search written iteratively

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void dfs(int u) {

Stack s= (u); Call dfs(1) | Iteration 1
while (s is not empty) {
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);
}
} 2
5
Stack s

Depth-First Search written iteratively

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void dfs(int u) {
Stack s= (u); Call dfs(1) | Iteration 1
while (s is not empty) {
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);

2
5

Stack s

Depth-First Search written iteratively

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void dfs(int u) {

Stack s= (u); Call dfs(1) | Iteration 2
while (s is not empty) {
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);

2
5

Stack s

Depth-First Search written iteratively

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void dfs(int u) {

Stack s= (u); Call dfs(1) | Iteration 2
while (s is not empty) {
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);
}
}
5
Stack s

Depth-First Search written iteratively

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void dfs(int u) {

Stack s= (u); Call dfs(1) | Iteration 2
while (s is not empty) {
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);
}
}
5
Stack s

Depth-First Search written iteratively

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void dfs(int u) {

Stack s= (u); Call dfs(1) | Iteration 2

while (s is not empty) {
u=s.pop(); Yes, 5 is put on the
if (u has not been visited) {

stack twice, once for
each edge to it. It will
be visited only once.

visit u;
for each edge (u, v) leaving u:
s.push(v);

Stack s

Breadth-First Search

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void bfs(int u) {
Queue g=(u); // Not Java!
// inv: all nodes that have to be visited are
// REACHABLE from some node in s
while (g is not empty) {
u= g.popFirst(); // Remove first node in queue, putin u
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
g.append(v); //Add to end of queue

Breadth-First Search

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void bfs(int u) {
Queue g= (u); Call bfs(1) |
while g is not empty) {
u= g.popFirst();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
q.append(v);

Breadth-First Search

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void bfs(int u) {
Queue g= (u); Call bfs(1) | Iteration O
while g is not empty) {
u= g.popFirst();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
q.append(v);

Breadth-First Search

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void bfs(int u) {
Queue g= (u); Call bfs(1) | Iteration 0
while g is not empty) {
u= qg.popFirst();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
q.append(v);

Queue q

Breadth-First Search

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void bfs(int u) {
Queue g= (u); Call bfs(1) | Iteration O
while g is not empty) {
u= g.popFirst();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
q.append(v);

Queue q

Breadth-First Search

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void bfs(int u) {
Queue g= (u); Call bfs(1) | Iteration 0
while g is not empty) {
u= q.popFirst();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
q.append(v);

02
Queue q

Breadth-First Search

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void bfs(int u) {
Queue g= (u); Call bfs(1) | Iteration 1
while g is not empty) {
u= g.popFirst();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
q.append(v);

02
Queue q

Breadth-First Search

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void bfs(int u) {
Queue g= (u); Call bfs(1) Iteration 1
while g is not empty) {
u= g.popFirst();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
q.append(v);

Breadth-First Search

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void bfs(int u) {
Queue g= (u); Call bfs(1) | Iteration 1
while g is not empty) {
u= g.popFirst();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
q.append(v);

@‘/0 Queue q

Breadth-First Search

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void bfs(int u) {
Queue g= (u); Call bfs(1) Iteration 1
while g is not empty) {
u= qg.popFirst();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
q.append(v);

27

@‘/0 Queue q

Breadth-First Search

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void bfs(int u) {
Queue g= (u); Call bfs(1) | Iteration 2
while g is not empty) {
u= g.popFirst();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
q.append(v);

27

@ g Queueq

Breadth-First Search

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void bfs(int u) {
Queue g= (u); Call bfs(1) Iteration 2
while g is not empty) {
u= q.popFirst();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
q.append(v);

@4/0 Queueq

Breadth-First Search

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void bfs(int u) {
Queue g= (u); Call bfs(1) | Iteration 2
while g is not empty) {
u= g.popFirst();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
q.append(v);

@‘/0 Queue q

Breadth-First Search

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void bfs(int u) {
Queue g= (u); Call bfs(1) | Iteration 2
while g is not empty) {
u= g.popFirst();

if (u has not been visited) { ?;;aﬁ;l;:zst:
Visit u; X (2) All nodes 1 edge fromu
for each edge (u, v) leaving u: (3) All nodes 2 edges from u
q.append(v);

(4) All nodes 3 edges from u

735
Queue q

10

