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Readings

* Chapter 28: Graphs
 Chapter 29: Graph Implementations



These aren’t the graphs we’re interested in
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V.J. Wedeen and L.L. Wald, Martinos Center for Biomedical Imaging at MGH



And so is this
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And this




This carries Internet traffic across the oceans




A social graph
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An older social graph

Locke’s (blue) and Voltaire’s (yellow) correspondence.
Only letters for which complete location information is available are shown.
Data courtesy the Electronic Enlightenment Project, University of Oxford.



An older social graph
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A fictional social graph
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A transport graph
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A circys
circuit graph (flip-flop)
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A circuit graph (Intel 4004)




A circuit graph (Intel Haswell)
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This is not a graph, this is a cat




This is a graph(ical model) that has
learned to recognize cats
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Some abstract graphs
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Applications of Graphs

Communication networks; social networks
Routing and shortest path problems
Commodity distribution (network flow)
Traffic control

Resource allocation

Numerical linear algebra (sparse matrices)
Geometric modeling (meshes, topology, ...)
Image processing (e.g. graph cuts)
Computer animation (e.g. motion graphs)
Systems biology

Digital humanities (e.g. Republic of Letters)



Directed Graphs

A directed graph (digraph) is a pair (V, E)
where
— Vis a set

— FE'is a set of ordered pairs (u, v) whereu,y €V
» Often require u # v (i.e. no self-loops)

An element of V'is called a vertex or node

An element of £ is called an edge or arc

V=1{4,B,C,D,E)

E = {(4,0), (B,4), (B,0),
V| = size of V, often denoted » " :gC»D), (D,0)}
|E| = size of £, often denoted IE| =5



Undirected Graphs

* An undirected graph is just like a directed
graph!
— ... except that E is now a set of unordered

pairs {u, v} whereuy €V

* Every undirected graph is easily
converted to an equivalent directed

graph
— Replace every undirected edge with two V=1{4,B,C,D,E}
: : e E={{4,C}, {B.A},
directed edges in opposite directions (B.C) (C.DV)
* ... but not vice versa V=5

[E| =4



Graph Terminology

Vertices # and v are called

— the source and sink of the directed edge (u, v),
respectively

— the endpoints of (u, v) or {u, v}
Two vertices are adjacent if they are
connected by an edge

The outdegree of a vertex u in a directed
graph is the number of edges for which u is
the source

The indegree of a vertex vin a directed graph
is the number of edges for which v is the sink

The degree of a vertex u in an undirected
graph is the number of edges of which u is an
endpoint



More Graph Terminology

A path is a sequence VosV15V2se+5V, of vertices
such thatforO0<i<p-1,

— (v,v4 ) EL if the graph is directed

— {v, v} EEif the graph is undirected
The length of a path is its number of edges
— In this example, the length is 2

A path is simple if it doesn’t repeat any vertices

A cycle is a path vy,vy,v,,...,v, such that v, = v,

A cycle is simple if it does not repeat any
vertices except the first and last

A graph is acyclic if it has no cycles
A directed acyclic graph is called a DAG

Path
A,C,D

DAG



Is this a DAG?

* Intuition:
— If it’s a DAG, there must be a vertex with indegree zero

* This idea leads to an algorithm

— A digraph is a DAG if and only if we can iteratively delete
indegree-0 vertices until the graph disappears
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Is this a DAG?
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YES!

* Intuition:
— If it’s a DAG, there must be a vertex with indegree zero

* This idea leads to an algorithm

— A digraph is a DAG if and only if we can iteratively delete
indegree-0 vertices until the graph disappears



Topological Sort

 We just computed a topological sort of the DAG

— This is a numbering of the vertices such that all
edges go from lower- to higher-numbered vertices

— Useful in job scheduling with precedence constraints



Graph Coloring

* A coloring of an undirected graph is an
assignment of a color to each node such that no
two adjacent vertices get the same color

* How many colors are needed to color this graph?



Graph Coloring

* A coloring of an undirected graph is an
assignment of a color to each node such that no
two adjacent vertices get the same color

8

[

* How many colors are needed to color this graph?



An Application of Coloring

Vertices are jobs

Edge (u, v) is present if jobs u and v each require
access to the same shared resource, and thus
cannot execute simultaneously

Colors are time slots to schedule the jobs

Minimum number of colors needed to color the
graph = minimum number of time slots required

(&)



Planarity

 Agraphis planar if it can be drawn in the
plane without any edges crossing

* |s this graph planar?
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— Yes!



Planarity

* A graphis planarifit can be drawn in the
plane without any edges crossing

* |s this graph planar?
— Yes!



Detecting Planarity

Kuratowski's Theorem:

 Agraph is planar if and only if it does not contain
a copy of K5 or K5 5 (possibly with other nodes
along the edges shown)



Central Balkan Bg i_ogn

Four-Color Theorem:

Every planar graph is

4-colorable
[Appel & Haken, 1976]

(Every map defines a planar
graph — countries are vertices,
and two adjacent countries
define an edge)

Lambert Conformal Conic Projection,
standard parallels 40 N and 56 N

0y~ 0 50 Kilometers
e
o 50 Miles
Independent state, but this entity has not been formally
|mmmmb/mumm
16
f




Another 4-colored planar graph

http://www.cs.cm



Bipartite Graphs

* Adirected or undirected graph is bipartite if
the vertices can be partitioned into two sets
such that no edge connects two vertices in

the same set @

* The following are equivalent N O
— G is bipartite —7
— G is 2-colorable Q

— (G has no cycles of odd length

0



Traveling Salesperson

Find a path of minimum distance that visits every city



Representations of Graphs

1. 7T2
/ 8
4 =3
Adjacency List Adjacency Matrix
1 0 1 0 1
3o o |o Jo
4 0 1 1 0
BN



Adjacency Matrix or Adjacency List?

* Definitions:
— n = number of vertices
— m = number of edges
— d(u) = degree of u = number of edges leaving u
* Adjacency Matrix
— Uses space O(n?)
— Can iterate over all edges in time O(#?)
— Can answer “Is there an edge from u to v?” in O(1) time
— Better for dense graphs (lots of edges)
* Adjacency List
— Uses space O(m + n)
— Can iterate over all edges in time O(m + n)
— Can answer “Is there an edge from 1 to v?” in O(d(u)) time
— Better for sparse graphs (fewer edges)



Graph Algorithms

e Search
— Depth-first search
— Breadth-first search

* Shortest paths
— Dijkstra's algorithm

* Minimum spanning trees
— Prim's algorithm
— Kruskal's algorithm



Readings

* Chapter 28: Graphs
 Chapter 29: Graph Implementations



