
GENERICS AND THE
JAVA COLLECTIONS FRAMEWORK

Lecture 15
CS2110 – Spring 2015

Prelim and grading A4
2

Purpose of prelim: provide feedback on what you learned.
Did you pick up your prelim yet?

We do make mistakes
Did you pick up your prelim yet?

I have ~25 regraded prelims up front. Pick up before/after
class if you want. (Regrade notes are on the CMS.)
Then they go in hand-back room Gates 216

(Gries: I thought I
made a mistake once,

but I was wrong)

Grading A4 starts tomorrow. Will take 5-6 days.

Textbook and Homework

Generics: Appendix B
Generic types we discussed: Chapters 1-3, 15

Useful tutorial:

docs.oracle.com/javase/tutorial/extra/generics/index.html

3

Testing: A4

Our job: Not to debug our programs but to help you
learn how to debug your programs.

Piazza got out of hand with too many emails that
were not fruitful.

Sid wrote Piazza note @1033 on testing/debugging.
Please read it.

4

letters not moving
Every time I click on the letters, I get a
NullPointerException... and they don't move.

A4 took a great deal of time, for many

We will cut back on A5 and attempt to give you good
instructions, so it does not take so long.

Not handing it out today because of that.

We should question WHY A4 caused difficulty

5

Why was A4 so hard (if it was)

¨  Start early, to have time to ponder, ask questions, get help?
¨  Did you debug/test properly?

¤  BoundingBox methods correct before moving on to BlockTree?
¤ Write a Junit test class to test BoundingBox methods? (one

purpose of A1 and A3 was to give you practice with this)
¤  Put in println statements to help find the cause when your

program threw a null-pointer exception or froze or just didn’t
do the right thing?

¤  Execute code by hand, carefully?

6

BlockTree: one of 2 ArrayLists: 0 blocks

Put println statement in to print info about blocks:
Also, put a return in so that the new BlockTrees would not be
constructed, to shorten output.
 heightbased. lower 0.242…, mid 0.25, high 0.2571…
 Block b.position.y: 0.8357142857142857, value: true
 Block b.position.y: 0.8357142857142857, value: true
 Block b.position.y: 0.8357142857142857, value: true

7

Block not even within box!
Turned out to be mistake in
BoundBox.findBox

Time wasted because
early method was not
correct!

Generic Types in Java
8

/** An instance is a doubly linked list. */
public class LinkedList<E> { …}

You can do this:

 LinkedList d= new LinkedList();

 d.append(“xy”);
But this is an error:

 String s= d.getFirst().getValue();

Need to cast value to String:

 String s= (String) d.getFirst().getValue();

getValue returns a
value of type Object

The cast introduces
clutter. It introduces

possible runtime
errors if wrong cast

is done

Generic Types in Java (added in Java 5)
9

/** An instance is a doubly linked list. */
public class LinkedList<E> {
 }

You can do this:

 LinkedList<Shape> c= new LinkedList<Shape>();
 c.append(new Circle(…));

 Shape sv= c.getHead().getValue();

Type parameter

You know that in
the class, you can
use E where ever a
type used.

1.  No cast is needed, since only Shapes can be appended.
2.  Errors caught: illegal to append anything but a Shape to c.
3.  Safer, more efficient

0. Automatic cast to Shape.

IS LinkedList<String> a subtype of LinkedList<Object>?

10

String is a subclass of Object.
So can store a String in an Object variable:
 Object ob= “xyx”;
You might therefore think that
 LinkedList<String> is a subtype of
 LinkedList<Object>

It is NOT. On the next slide, we explain why it is not
---why allowing that would create an unsafe situation

Object@...
Object

String

IS LinkedList<String> a subtype of LinkedList<Object>?

11

Suppose it is a subtype. Then we can write:

LinkedList<String> ds= new LinkedList<String>();
LinkedList<Object> do= ds; // an automatic upward cast!
do.append(new Integer(55));

ds LL<String>@24252424
LL<String>

do LL<String>@24252424
LL<Object>

Linked list ds no longer contains only Strings!

Therefore, Java does
not view LL<String>
as a subclass of
LL<Object>

Suppose S1 is a subclass of S2.
It is not the case that

 CL<S1> is a subclass of CL<S2>

Study the previous slide to see why letting CL<S1> be a subclass
of CL<S2> would create unsafe situations, ripe for errors

May be the hardest thing to learn about generics

12

Wild cards: Abbreviate LinkedList by LL
13

/** Print values of ob, one per line. */
public static void print(LL<Object> ob) {
 LL<Object>.Node n= ob.getFirst();
 while (n != null) {
 System.out.println(n.getValue());
 n= n.next();
 }
 }

Looks like print,
written outside
class LL, can be
used to print
values of any lists

But it won’t work on the following because LL<String> is not a
subclass of LL<Object>

LL<String> d= new LinkedList<String>();
 …
print(d); // This is illegal

Wild cards: Abbreviate LinkedList by LL
14

/** Print values of ob, one per line. */
public void print(LL<Object> ob) {
 LL<Object>.Node n= ob.getFirst();
 while (n != null) {
 System.out.println(n.getValue());
 n= n.next();
 }
}

Looks like print,
written outside
class LL, can be
used to print any
lists’ values

But it won’t work on the following because LL<String> is not a
subclass of LL<Object>

LL<String> d= new LinkedList<String>();
 …
print(d); // This is illegal

Use a wild card ?: Means any type, but unknown
15

/** Print values of ob, one per line. */
public static void print(LL<?> ob) {
 LL<?>.Node n= ob.getFirst();
 while (n != null) {
 System.out.println(n.getValue());
 n= n.next();
 }
 }

It now works!

LL<String> d= new LL<String>();
 …
print(d); // This is legal, because
 // <String> is a class

? Is a “wild card”,
standing for any
type

Use a wild card ?: Means any type, but unknown
16

/** Print values of ob, one per line. */
public static void print(LL<?> ob) {
 LL<?>.Node n= ob.getFirst();
 while (n != null) {
 System.out.println(n.getValue());
 ob.append(new Integer(5));
 }
 }

Looks like print,
written outside
class LL, can be
used to print any
lists’ values

But the redline is illegal!
In LL, append’s parameter is of type E, and ? Is not necessarily
E, so this line is illegal

Bounded wild card
17

/** Print values of ob, one per line. */
public void print(LL<? extends Shape> ob) {
 LL<? extends Shape>.Node n= ob.getHead();
 while (n != null) {
 System.out.println(n.getValue());

 }
 }

legal:
LL<Circle> dc= …;
print(dc);

illegal:
LL<JFrame> df= …;
print(df);

Can be Shape or any subclass of Shape

ob.append(new Circle(…)); //Still illegal because type
 // ? Is unknown. Could be Rectangle

Method to append array elements to linked list?

18

/** Append elements of b to d */
public static void m1(Object[] b, LL<Object> d) {
 for (int i= 0; i < b.length; i= i+1) {
 d.append(b[i]);
 }
}

LL<Integer> d= new LL<Integer>();
Integer ia= new Integer[]{3, 5, 6};
m1(ia, d);

Doesn’t work because:
LL<Integer> not a subtype of LL<Object>

Generic method: a method with a type parameter T

19

/** Append elements of b to d */
public static <T> void m(T[] b, DLL<T> d) {
 for (int i= 0; i < b.length; i= i+1) {
 d.append(b[i]);
 }
}

LL<Integer> d= new LL<Integer>();
Integer ia= new Integer[]{3, 5, 6};
m(ia, d);

Don’t give an explicit
type in the call. Type is
inferred.

You can have more than one type parameter, e.g. <T1, T2>

type parameter

Interface Comparable
20

public interface Comparable<T> {
 /** Return a negative number, 0, or positive number
 depending on whether this value is less than, equal to,
 or greater than ob */
 int compareTo(T ob);
}

Allows us to write methods to sort/search arrays of
any type (i.e. class) provided that the class implements
Comparable and thus declares compareTo.

Generic Classes
21

 /** = the position of min value of b[h..k]. Pre: h <= k. */
 public static <T> int min(Comparable<T>[] b, int h, int k) {
 int p= h; int i= h;
 // inv: b[p] is the min of b[h..i]
 while (i != k) {
 i= i+1;
 T temp= (T)b[i];
 if (b[p].compareTo(temp) > 0) p= i;
 }
 return p;
 }

Java Collections Framework
22

¨  Collections: holders that let
you store and organize
objects in useful ways for
efficient access

¨  Package java.util
includes interfaces and
classes for a general
collection framework

� Goal: conciseness
§ A few concepts that are

broadly useful
§ Not an exhaustive set of

useful concepts

� The collections
framework provides

§  Interfaces (i.e. ADTs)
§  Implementations

JCF Interfaces and Classes

¨  Interfaces
¤  Collection

¤  Set (no duplicates)

¤  SortedSet

¤  List (duplicates OK)

¤  Map (i.e. dictionary)

¤  SortedMap

¤  Iterator

¤  Iterable

¤  ListIterator

¨  Classes
HashSet
TreeSet

ArrayList
LinkedList

HashMap
TreeMap

23

interface java.util.Collection<E>

24

¨  public int size(); Return number of elements
¨  public boolean isEmpty(); Return true iff collection is empty
¨  public boolean add(E x);

¤  Make sure collection includes x; return true if it has
changed (some collections allow duplicates, some don’t)

¨  public boolean contains(Object x);
¤  Return true iff collection contains x (uses method equals)

¨  public boolean remove(Object x);
¤  Remove one instance of x from the collection; return true

if collection has changed
¨  public Iterator<E> iterator();

¤  Return an Iterator that enumerates elements of collection

Iterators: How “foreach” works

The notation for(Something var: collection) { … }
is syntactic sugar. It compiles into this “old code”:

The two ways of doing this are identical but the foreach loop is
nicer looking.

You can create your own iterable collections

25

Iterator<E> _i= collection.iterator();
while (_i.hasNext()) {
 E var= _i.Next();
 . . . Your code . . .
}

java.util.Iterator<E> (an interface)

26

public boolean hasNext();
¤  Return true if the enumeration has more elements

public E next();
¤  Return the next element of the enumeration
¤  Throw NoSuchElementException if no next element

public void remove();
¤  Remove most recently returned element by next() from

the underlying collection
¤  Throw IllegalStateException if next() not yet called or if

remove() already called since last next()
¤  Throw UnsupportedOperationException if remove()

not supported

Additional Methods of Collection<E>
27

public Object[] toArray()
¤  Return a new array containing all elements of collection

public <T> T[] toArray(T[] dest)
¤  Return an array containing all elements of this collection;

uses dest as that array if it can
Bulk Operations:

¤  public boolean containsAll(Collection<?> c);
¤  public boolean addAll(Collection<? extends E> c);
¤  public boolean removeAll(Collection<?> c);
¤  public boolean retainAll(Collection<?> c);
¤  public void clear();

java.util.Set<E> (an interface)
28

¨  Set extends Collection
¤ Set inherits all its methods

from Collection

¨  A Set contains no duplicates
If you attempt to add() an
element twice, the second
add() will return false (i.e.
the Set has not changed)

� Write a method that checks
if a given word is within a

Set of words

� Write a method that
removes all words longer
than 5 letters from a Set

� Write methods for the union
and intersection of two

Sets

Set Implementations
29

java.util.HashSet<E> (a hashtable. Learn about hashing in recitation soon)
¤  Constructors

n  public HashSet();
n  public HashSet(Collection<? extends E> c);
n  public HashSet(int initialCapacity);
n  public HashSet(int initialCapacity,

 float loadFactor);
java.util.TreeSet<E> (a balanced BST [red-black tree])

¤  Constructors
n  public TreeSet();
n  public TreeSet(Collection<? extends E> c);
n  ...

java.util.SortedSet<E> (an interface)

30

¨  SortedSet extends Set
For a SortedSet, the iterator() returns elements in sorted order
¨  Methods (in addition to those inherited from Set):

¤  public E first();
n Return first (lowest) object in this set

¤  public E last();
n Return last (highest) object in this set

¤  public Comparator<? super E> comparator();
n Return the Comparator being used by this sorted set if

there is one; returns null if the natural order is being
used

¤  …

java.lang.Comparable<T> (an interface)

31

¨  public int compareTo(T x);
Return a value (< 0), (= 0), or (> 0)

n  (< 0) implies this is before x
n  (= 0) implies this.equals(x)
n  (> 0) implies this is after x

¨  Many classes implement Comparable
¤ String, Double, Integer, Char,
java.util.Date,…

¤  If a class implements Comparable then that is considered
to be the class’s natural ordering

java.util.Comparator<T> (an interface)

32

¨  public int compare(T x1, T x2);
Return a value (< 0), (= 0), or (> 0)

n (< 0) implies x1 is before x2
n (= 0) implies x1.equals(x2)
n (> 0) implies x1 is after x2

¨  Can often use a Comparator when a class’s natural order is
not the one you want
¤ String.CASE_INSENSITIVE_ORDER is a predefined
Comparator
¤ java.util.Collections.reverseOrder() returns a Comparator
that reverses the natural order

SortedSet Implementations
33

¨  java.util.TreeSet<E>
constructors:

n public TreeSet();
n public TreeSet(Collection<? extends E> c);
n public TreeSet(Comparator<? super E> comparator);
n  ...

¨  Write a method that prints out a SortedSet of words in order
¨  Write a method that prints out a Set of words in order

java.util.List<E> (an interface)
34

¨  List extends Collection items accessed via their index
¨  Method add() puts its parameter at the end of the list
¨  The iterator() returns the elements in list-order
¨  Methods (in addition to those inherited from Collection):

¤  public E get(int i); Return the item at position i
¤  public E set(int i, E x); Place x at position i, replacing previous

item; return the previous itemvalue
¤  public void add(int i, E x);

n  Place x at position index, shifting items to make room
¤  public E remove(int index); Remove item at position i, shifting
 items to fill the space; Return the removed item
¤  public int indexOf(Object x);

n  Return index of the first item in the list that equals x (x.equals())
¤  …

List Implementations. Each includes methods specific to
its class that the other lacks

¨  java.util.ArrayList<E> (an array; doubles the length each time
 room is needed)

Constructors
n  public ArrayList();
n  public ArrayList(int initialCapacity);
n  public ArrayList(Collection<? extends E> c);

¨  java.util.LinkedList <E> (a doubly-linked list)
Constructors

n  public LinkedList();
n  public LinkedList(Collection<? extends E> c);

35

Efficiency Depends on Implementation

36

¨  Object x= list.get(k);
¤ O(1) time for ArrayList
¤ O(k) time for LinkedList

¨  list.remove(0);

¤ O(n) time for ArrayList
¤ O(1) time for LinkedList

¨  if (set.contains(x)) ...

¤ O(1) expected time for HashSet
¤ O(log n) for TreeSet

What if you need O(1) for both?

¨  Database systems have this issue

¨  They often build “secondary index” structures
¤ For example, perhaps the data is in an ArrayList
¤ But they might build a HashMap as a quick way to find

desired items

¨  The O(n) lookup becomes an O(1) operation!

37

