

Midterm TA evals coming up!

Please please complete the eval when you hear about it.

Your feedback will be used to help your TA improve this semester.

TREES

\square

A3 due tonight

262 groups submitted ~ 215 to go
max: 24 hours used average: 4.2 hours mean: 4.0
Histogram: [inclusive:exclusive)
(e.g. 63 people took at least 2 but less than 3 hours)

$[0: 1): 3$	$[07: 08): 20$	We wrote a Java program to ex-
$[1: 2): 22$	$[08: 09): 12$	tract the times and produce this
$[2: 3): 63$	$[10: 11): 5$	table. Later, we will share it with
$[3: 4): 67$	$[13: 14): 2$	you.
$[4: 5): 62$	$[15: 16): 3$	
$[5: 6): 45$	$[16: 17): 3$	These assignments are not
$[6: 7): 27$	$[24: 25): 1$	meant to kill you! If you are taking an inordinate amount of time, seek help!

Readings and homework

Textbook, Chapter 23, 24

Homework: A thought problem (draw pictures!) In A1, you had a binary tree!
Given two such trees, how would you determine whether they had a person in
common?

Tree overview

Tree: recursive data structure: A tree is a set of nodes that is either
-a node with a value and a list of trees (called its children)
Binary tree: tree in which each node has two children: a left child and a right child

General tree

Not a tree

Binary tree

List-like tree

Binary trees were in A1!

You have seen a binary tree in A1.

A PhD object phd has one or two advisors.
Here is an intellectual ancestral tree!

Tree terminology

M: root of this tree
G: root of the left subtree of M
B, H, J, N, S: leaves (their set of children is empty)
N : left child of P ; S : right child
P : parent of N
M and G : ancestors of D
P, N, S: descendents of W

J is at depth 2 (i.e. length of path from root $=$ no. of edges)
W is at height 2 (i.e. length of longest path to a leaf)
A collection of several trees is called a ...?

Tree terminology

Two views of G.
G is a node of a tree.
G is the root of a (sub)tree, that is, we can talk about tree G or the tree rooted at G.

Same idea:
X is a node of a linked list.
Linked list X (Linked list whose

first node is X)

Class for binary tree node

```
class TreeNode<T> {
    private T datum;
    private TreeNode<T> leff, right;
```

Points to left subtree (null if empty)

Points to right subtree (null if empty)

```
    /** Constructor: one node tree with datum x */
    public TreeNode (T x) { datum= x; }
    /** Constr: Tree with root value x, left tree l, right tree r */
    public TreeNode (T x, TreeNode<T> 1, TreeNode <T> r) {
        datum= x; left= l; right= r;
    }
}
more methods: getDatum,
setDatum, getLeft, setLeft, etc.
```


Binary versus general tree

In a binary tree, each node has exactly two pointers: to the left subtree and to the right subtree:
\square One or both could be null, meaning the subtree is empty (remember, a tree is a set of nodes)

In a general tree, a node can have any number of child nodes
\square Very useful in some situations ...
\square... one of which may be in an assignment!

Class for general tree nodes
class GTreeNode \{

1. private Object datum;
2. private GTreeCell[] siblings;
3. appropriate getters/setters \}

Parent contains an array of its children

Alternative data structure for a general tree
class GTreeNode \{

1. private Object datum;
2. private GTreeCell left; 3. private GTreeCell sibling;
3. appropriate getters/setters
\}

Use of trees: Represent expressions

In textual representation:
Parentheses show hierarchical structure

In tree representation:
Hierarchy is explicit in the structure of the tree

We'll talk more about expression and trees on Thursday

Text	Tree Representation
-34	-34

$-(2+3)$

$((2+3)+(5+7))$

Recursion on trees

Trees are defined recursively. So recursive methods can be written to process trees in an obvious way

Base case
\square empty tree (null)
\square leaf

Recursive case
\square solve problem on left / right subtrees
put solutions together to get solution for full tree

Searching a binary tree. The tree is a parameter

```
/** Return true iff x is the datum in a node of tree t*/
public static boolean treeSearch(Object x, TreeNode t) {
    if ( }\textrm{t}==\mathrm{ null) return false;
    if (t.datum.equals(x)) return true;
    return treeSearch(x, t.left) || treeSearch(x, t.right);
}
```

- Analog of linear search in lists: given tree and an object, find out if object is stored in tree
- Easy to write recursively, harder to write iteratively

Calculate size of binary tree. Instance function and static function

public class TN \{
private TN lft; private TN rgt;

/** Return size of this tree */
public int size() \{ return $1+(\mathrm{lft}==$ null ? $0: 1 \mathrm{ft} . \operatorname{size}())+$

$$
(\mathrm{rgt}==\text { null } ? 0: \text { rgt.size() })
$$

$\beta^{3 * *}$ Return size of tree t-note: t could be null (empty tree)*/ public static int size(TN t) \{
if ($\mathrm{t}==$ null) return 0 ;
return $1+\operatorname{size}(t . l f t)+\operatorname{size}(t . r g t) ;$
\}

Binary Search Tree (BST)

16

All right descendents of each node have a larger value than that node's value

```
/** Return true iff x is the datum in a node of tree t.
    Precondition: t is a BST */
public static boolean treeSearch (Object x, TreeNode t) {
    if (t== null) return false;
    if (t.datum.equals(x)) return true;
    if (t.datum.compareTo(x) > 0)
        return treeSearch(x, t.left);
    return treeSearch(x, t.right);
```


Building a BST

\square To insert a new item
\square Pretend to look for the item
\square Put the new node in the place where you fall off the tree
\square This can be done using either recursion or iteration

\square Example

- Tree uses alphabetical order
\square Months appear for insertion in calendar order

What can go wrong?

A BST makes searches very fast, unless...
\square Nodes are inserted in increasing order
\square In this case, we're basically building a linked list (with some extra wasted space for the left fields, which aren' \dagger being used)

BST works great if data arrives in random order
feb

Printing contents of BST

Because of ordering rules for a BST, it's easy to print the items in alphabetical order
\square Recursively print left subtree
\square Print the node
\square Recursively print right subtree
/** Print BST t in alpha order */ private static void print(TreeNode $\mathfrak{t})$ \{
if ($\mathrm{t}==$ null) return; print(t.lchild);
System.out.print(t.datum);
print(t.rchild);
\}

Tree traversals

"Walking" over whole tree is a tree traversal

- Done often enough that there are standard names
Previous example:
inorder traversal
- Process left subtree

■ Process roo \dagger

- Process right subtree

Note: Can do other processing besides printing

Other standard kinds of traversals

- preorder traversal
- Process root
- Process left subtree
- Process right subtree
- postorder traversal
\bullet Process left subtree
- Process right subtree
- Process root
- level-order traversal
- Not recursive uses a queue. We discuss later

Some useful methods

```
/** Return true iff node t is a leaf */
public static boolean isLeaf(TreeNode t) {
    return t != null && t.left == null && t.right == null;
}
/** Return height of node t (postorder traversal) */
public static int height(TreeNode t) {
    if (t== null) return -1; //empty tree
    if (isLeaf(t)) return 0;
    return 1 + Math.max(height(t.left), height(t.right));
}
/** Return number of nodes in t (postorder traversal) */
public static int nNodes(TreeNode t) {
    if (t== null) return 0;
    return 1 + nNodes(t.left) + nNodes(t.right);
}
```


Useful facts about binary trees

Max \# of nodes at depth d: $2^{\text {d }}$

If height of tree is h
-min \# of nodes: $\mathrm{h}+1$
-max \#of nodes in tree:
$\square 2^{0}+\ldots+2^{\mathrm{h}}=2^{\mathrm{h}+1}-1$

Complete binary tree
\square All levels of tree down to a certain depth are completely filled
depth
$0 \ldots \ldots$.

Height 2,
minimum number of nodes

Assignment A4: Collision detection

Detect whether two shapes share a common pixel (or block)

(attempt to show the blocks)

A shape consists of LOTS of blocks (like pixels). If each shape has 1,000 blocks, brute force checking for a common block takes worst-case time proportional to $1,000^{\wedge} 2=1,000,000$.

Assignment A4: Idea: bounding box

If their bounding boxes don't overlap, the shapes can't have a block in common.

Each Shape object has a field that contains its bounding box. Can check whether two bound-
 ing boxes overlap in constant time.
But, if bounding boxes overlap, still have to look for a block that is
common to both, and there may not be one! Need data structure to make that task efficient

Assignment A4: Idea: Use a Binary search tree!

Below, BT stands for BlockTree

| BT@1 |
| :--- | :--- | :--- |
| boxBT
 bounding box
 for blocks in
 this tree |
| one field of BT |

This object is a node of a binary search tree, and it and its subtrees describe a bunch of blocks (pixels)

Assignment A4: Leaf of the binary search tree

Below, BT stands for BlockTree

| BT@1 | BT |
| :--- | :--- | :--- |
| block | ptr to the
 block that
 this leaf
 describes |
| one field of BT | |

A leaf contains one block
For this shape, might have 1,000 leaves!
White space is not part of image

Assignment A4: internal node of the BST

Below, BT stands for BlockTree

BT@1

	BT
left	ptr to left subtree
right	ptr to right subtree

all blocks whose center is $<=$ midpt go in left subtree
all blocks whose center is > midpt go in right subtree
two fields of BT
bounding box is longer than it is tall

Assignment A4: internal node of the BST

Below, BT stands for BlockTree

left child	right child
blocks with vertical center $<=$ midpt	with vertical center $>$ midpt
midpt	bding box for flocks in tree

Assignment A4: the Block Tree: a BST

You will write the constructor of BlockTree, which constructs the BST. It will be recursive-like

You will write a method that uses the BlockTree ---i.e. the BST--- to determine whether two shapes have a block in common. That method will be recursive.

Assignment A4: Building a bounding box

public static BoundingBox findBBox(lterator<Block> iter)

This method is supposed to construct and return a BoundingBox (which represents a rectangle) for the blocks given by iter.

WHAT THE HECK IS AN ITERATOR?

We posted an explanation in Piazza A4 FAQ note @472

Class BoundingBox

Class BoundingBox contains methods whose bodies you must write. This is one of the first things to work on.

If you don't implement the methods correctly, nothing will work!

Think about how you can use a Junit testing class to test these.

Advice

This assignment is fun and illuminating. You will learn a lot from it.

It is harder than A3! You need time to ponder, to ask questions, to get answers. You have to start early!
Start reading now (if you haven't done so already). Get BoundingBox finished and tested soon.

Make use of the Piazza, especially A4 FAQ note @472.

Tree with parent pointers

In some applications, it is useful to have trees in which nodes can reference their parents

Analog of doubly-linked lists

Things to think about

What if we want to delete data from a BST?

A BST works great as long as it's balanced

How can we keep it balanced? This turns out to
 be hard enough to motivate us to create other kinds of trees

Tree Summary

\square A tree is a recursive data structure

- Each node has 0 or more successors (children)
\square Each node except the root has at exactly one predecessor (parent)
\square All node are reachable from the root
\square A node with no children (or empty children) is called a leaf
\square Special case: binary tree
- Binary tree nodes have a left and a right child
- Either or both children can be empty (null)
\square Trees are useful in many situations, including exposing the recursive structure of natural language and computer programs

Suffix tree (we won't test on these)

Suffix trees (we won't test on these)

A suffix tree for a string s is a tree such that

- each edge has a unique label, which is a nonnull substring of s
- two edges leaving the same node have labels beginning with different characters
- catenation of labels along any path from root to a leaf gives a suffix of s
- all suffixes are represented by some path
- the leaf of the path is labeled with the index of the first character of the suffix in s

Suffix trees can be constructed in linear time

Suffix trees (we won't test on these)

\square Useful in string matching algorithms (e.g. longest common substring of 2 strings)
\square Most algorithms linear time
\square Used in genomics (human genome is $\sim 4 G B$)

Huffman trees (we won't test on these)

Fixed length encoding
$197^{*} 2+63^{*} 2+40 * 2+26 * 2=652$

Huffman encoding
$197^{*} 1+63^{*} 2+40 * 3+26 * 3=521$

Huffman compression of "Ulysses"

$\square{ }^{\prime}$	242125	00100000	3	110
$\square^{\prime} e^{\prime}$	139496	01100101	3	000
't'	95660	01110100	4	1010
$\square^{\prime} a^{\prime}$	89651	01100001	4	1000
'o'	88884	01101111	4	0111
' ${ }^{\prime}$ '	78465	01101110	4	0101
-'i'	76505	01101001	4	0100
$\square^{\prime} \mathrm{s}^{\prime}$	73186	01110011	4	0011
$\square^{\prime} h^{\prime}$	68625	01101000	5	11111
$\square^{\prime} r^{\prime}$	68320	01110010	5	11110
-' ${ }^{\prime}$	52657	01101100	5	10111
$\square^{\prime} u^{\prime}$	32942	01110101	6	111011
$\square^{\prime} g^{\prime}$	26201	01100111	6	101101
$\square^{\prime} \mathrm{f}$	25248	01100110	6	101100
$\square{ }^{\prime}$	21361	00101110	6	011010
'p'	20661	01110000	6	011001

Huffman compression of "Ulysses"

```
\begin{tabular}{|c|c|c|c|c|}
\hline '7' & 68 & 00110111 & 15 & 111010101001111 \\
\hline \(\square\) '/' & 58 & 00101111 & 15 & 111010101001110 \\
\hline \(\square{ }^{\prime}\) ' & 19 & 01011000 & 16 & 0110000000100011 \\
\hline -'\&' & 3 & 00100110 & 18 & 011000000010001010 \\
\hline '\%' & 3 & 00100101 & 19 & 0110000000100010111 \\
\hline '+' & 2 & 00101011 & 19 & 0110000000100010110 \\
\hline
\end{tabular}
■original size 11904320
\(\square\) compressed size 6822151
-42.7\% compression
```


BSP Trees (we won't test on these)

$\square B S P=$ Binary Space Partition (not related to BST!)
\square Used to render 3D images composed of polygons
\square Each node n has one polygon p as data
\square Left subtree of n contains all polygons on one side of p
\square Right subtree of n contains all polygons on the other side of p
\square Order of traversal determines occlusion (hiding)!

