
TREES
Lecture 11
CS2110 – Fall 2013

Midterm TA evals coming up!

Please please complete the eval
when you hear about it.

Your feedback will be used to
help your TA improve this
semester.

A3 due tonight

max: 24 hours used average: 4.2 hours mean: 4.0
Histogram: [inclusive:exclusive)
(e.g. 63 people took at least 2 but less than 3 hours)

2

262 groups submitted
~215 to go

[07:08): 20
[08:09): 12
[10:11): 5
[13:14): 2
[15:16): 3
[16:17): 3
[24:25): 1

[0:1): 3
[1:2): 22
[2:3): 63
[3:4): 67
[4:5): 62
[5:6): 45
[6:7): 27

We wrote a Java program to ex-
tract the times and produce this
table. Later, we will share it with
you.

These assignments are not
meant to kill you! If you are

taking an inordinate amount of
time, seek help!

Readings and homework

Textbook, Chapter 23, 24

Homework: A thought
problem (draw pictures!) In
A1, you had a binary tree!
Given two such trees, how
would you determine whether
they had a person in
common?

3

PhD

advisor1 advisor2

advisor1 advisor1 advisor2

advisor1 advisor1

advisor1 advisor2

Tree overview
4

Tree: recursive data structure:
A tree is a set of nodes that is
either

¤ empty OR
¤ a node with a value and

a list of trees (called
its children)

Binary tree: tree in which
each node has two children:
a left child and a right child

5

4

7 8 9

2

General tree

5

4

7 8

2

Binary tree

5

4

7 8

Not a tree

5

6

8
List-like tree

Binary trees were in A1!

You have seen a binary tree in A1.

A PhD object phd has one or two advisors.
Here is an intellectual ancestral tree!
 phd

 ad1 ad2

 ad1 ad2 ad1

5

Tree terminology
6

M: root of this tree
G: root of the left subtree of M
B, H, J, N, S: leaves (their set of children
 is empty)
N: left child of P; S: right child
P: parent of N
M and G: ancestors of D
P, N, S: descendents of W
J is at depth 2 (i.e. length of path from root = no. of edges)
W is at height 2 (i.e. length of longest path to a leaf)
A collection of several trees is called a ...?

M

G W

P J D

N H B S

Tree terminology
7

Two views of G.
G is a node of a tree.
G is the root of a (sub)tree,
 that is, we can talk about tree G
 or the tree rooted at G.

M

G W

P J D

N H B S

X Y Z

Same idea:
X is a node of a linked list.
Linked list X (Linked list whose
 first node is X)

Class for binary tree node
8

class TreeNode<T> {
 private T datum;
 private TreeNode<T> left, right;

 /** Constructor: one node tree with datum x */
 public TreeNode (T x) { datum= x; }

 /** Constr: Tree with root value x, left tree l, right tree r */
 public TreeNode (T x, TreeNode<T> l, TreeNode<T> r) {
 datum= x; left= l; right= r;
 }
}

Points to left subtree
(null if empty)

Points to right subtree
(null if empty)

more methods: getDatum,
setDatum, getLeft, setLeft, etc.

Binary versus general tree

In a binary tree, each node has exactly two pointers: to the left
subtree and to the right subtree:

¤ One or both could be null, meaning the subtree is empty
(remember, a tree is a set of nodes)

In a general tree, a node can have any number of child nodes
¤ Very useful in some situations ...
¤  ... one of which may be in an assignment!

9

Class for general tree nodes

10

class GTreeNode {
1.  private Object datum;
2.  private GTreeCell[] siblings;
3.  appropriate getters/setters
}

5

4

7 8 9

2

7 8 3 1

General
tree

Parent contains an array of its children

Alternative data structure for a general tree
11

class GTreeNode {
1.  private Object datum;
2.  private GTreeCell left;
3.  private GTreeCell sibling;
4.  appropriate getters/setters
}

5

4

7 8 9

2

7 8 3 1

5

4

7 8 9

2

7 8 3 1

General
tree

Tree
represented
using
GTreeCell

� Parent points only to its
leftmost child

� Each child has pointer to its
next sibling.

Use of trees: Represent expressions
12

In textual representation:
Parentheses show
hierarchical structure

In tree representation:
Hierarchy is explicit in
the structure of the tree

We’ll talk more about
expression and trees on
Thursday

-34 -34

- (2 + 3)

+

2 3

((2+3) + (5+7))

+

2 3 5 7

+

+

Text Tree Representation

-

Recursion on trees
13

Trees are defined recursively. So recursive methods can be
written to process trees in an obvious way

Base case
¤  empty tree (null)
¤  leaf

Recursive case
¤  solve problem on left / right subtrees
¤  put solutions together to get solution for full tree

Searching a binary tree. The tree is a parameter
14

/** Return true iff x is the datum in a node of tree t*/
public static boolean treeSearch(Object x, TreeNode t) {
 if (t == null) return false;
 if (t.datum.equals(x)) return true;
 return treeSearch(x, t.left) || treeSearch(x, t.right);
}

9

8 3 5 7

2

0

� Analog of linear search in lists:
given tree and an object, find out if
object is stored in tree

� Easy to write recursively, harder to
write iteratively

Calculate size of binary tree.
Instance function and static function

15

public class TN{
 private TN lft; private TN rgt;
 /** Return size of this tree */
 public int size() {
 return 1 + (lft == null ? 0 : lft.size()) +
 (rgt == null ? 0 : rgt.size());
 }

}

}

9

8 5 7

2

3

0

/** Return size of tree t –note: t could be null (empty tree)*/
public static int size(TN t) {
 if (t == null) return 0;
 return 1 + size(t.lft) + size(t.rgt);
}

Binary Search Tree (BST)
16

BST: All left descendents of each node have a smaller
 value than that node’s value
All right descendents of each node have a larger
value than that node’s value

2

0 3 7 18

5

15

/** Return true iff x is the datum in a node of tree t.
 Precondition: t is a BST */
public static boolean treeSearch (Object x, TreeNode t) {
 if (t== null) return false;

 if (t.datum.equals(x)) return true;

 if (t.datum.compareTo(x) > 0)
 return treeSearch(x, t.left);

 return treeSearch(x, t.right);
}

6 13

Building a BST
17

¨  To insert a new item
¤  Pretend to look for the item
¤  Put the new node in the

place where you fall off the
tree

¨  This can be done using either
recursion or iteration

¨  Example
¤  Tree uses alphabetical order
¤ Months appear for insertion

in calendar order

jan

feb mar

apr may jun

jul

What can go wrong?
18

A BST makes searches very fast,
unless…

¤ Nodes are inserted in
increasing order

¤  In this case, we’re basically
building a linked list (with
some extra wasted space for
the left fields, which
aren’t being used)

BST works great if data arrives in
random order

jan

feb

mar

apr

may

jun

jul

Printing contents of BST
19

Because of ordering
rules for a BST, it’s easy
to print the items in
alphabetical order

¤ Recursively print
left subtree

¤ Print the node
¤ Recursively print

right subtree

/** Print BST t in alpha order */
private static void print(TreeNode t) {
 if (t== null) return;
 print(t.lchild);
 System.out.print(t.datum);
 print(t.rchild);
}

Tree traversals

“Walking” over whole tree is
a tree traversal

¤  Done often enough that
there are standard names

 Previous example:
 inorder traversal

n Process left subtree
n Process root
n Process right subtree

Note: Can do other processing
besides printing

Other standard kinds of
traversals
§ preorder traversal

w Process root
w Process left subtree
w Process right subtree

§ postorder traversal
w Process left subtree
w Process right subtree
w Process root

§ level-order traversal
w Not recursive uses a queue.

We discuss later

20

Some useful methods
21

/** Return true iff node t is a leaf */
public static boolean isLeaf(TreeNode t) {
 return t != null && t.left == null && t.right == null;
}
/** Return height of node t (postorder traversal) */
public static int height(TreeNode t) {
 if (t== null) return -1; //empty tree
 if (isLeaf(t)) return 0;
 return 1 + Math.max(height(t.left), height(t.right));
}
/** Return number of nodes in t (postorder traversal) */
public static int nNodes(TreeNode t) {
 if (t== null) return 0;
 return 1 + nNodes(t.left) + nNodes(t.right);
}

Useful facts about binary trees
22

Max # of nodes at depth d: 2d

If height of tree is h
¤ min # of nodes: h + 1
¤ max #of nodes in tree:
¤ 20 + … + 2h = 2h+1 – 1

Complete binary tree
¤ All levels of tree down to

a certain depth are
completely filled

5

4

7 8

2

0 4

depth

0

1

2

5

2

4
Height 2,
minimum number of nodes

Height 2,
maximum number of nodes

Assignment A4: Collision detection
23

Detect whether two shapes share a
common pixel (or block)

A shape consists of LOTS of blocks (like pixels). If each shape
has 1,000 blocks, brute force checking for a common block
takes worst-case time proportional to 1,000^2 = 1,000,000.

(attempt to show the blocks)

Assignment A4: Idea: bounding box
24

If their bounding boxes don’t
overlap, the shapes can’t have
a block in common.

Each Shape object has a field
that contains its bounding box.
Can check whether two bound-
ing boxes overlap in constant
time.
But, if bounding boxes overlap, still
have to look for a block that is
common to both, and there may not
be one! Need data structure to make
that task efficient

Assignment A4: Idea: Use a Binary search tree!
25 Below, BT stands for BlockTree

BT
BT@1 This object is a node of a

binary search tree, and it
and its subtrees describe a
bunch of blocks (pixels) bounding box

for blocks in
this tree

box

one field of BT

Assignment A4: Leaf of the binary search tree
26 Below, BT stands for BlockTree

BT
BT@1 A leaf contains one block

ptr to the
block that
this leaf
describes

block

one field of BT

For this shape,
might have
1,000 leaves!
White space is
not part of
image

Assignment A4: internal node of the BST
27 Below, BT stands for BlockTree

two fields of BT

BT
BT@1

ptr to left
subtree

left

ptr to right
subtree

right

node

all blocks whose
center is <= midpt
go in left subtree

right
child

left
child

all blocks whose
center is > midpt
go in right subtree

Doesn’t
contain a
block!

bounding box for all blocks
in left or right subtree

midpt

bounding box is longer
than it is tall

Assignment A4: internal node of the BST
28 Below, BT stands for BlockTree

bounding box for
blocks in tree

midpt

node

blocks with
horiz center
<= midpt

right
child

left
child

blocks with
horiz center

> midpt bding
box
for

blocks
in tree

midpt

node

right
child

left
child

blocks
with
vertical
center <=
midpt

blocks
with
vertical
center >
midpt

Assignment A4: the Block Tree: a BST

You will write the constructor of BlockTree, which
constructs the BST. It will be recursive-like

You will write a method that uses the BlockTree ---i.e.
the BST--- to determine whether two shapes have a
block in common. That method will be recursive.

29

Assignment A4: Building a bounding box

public static BoundingBox findBBox(Iterator<Block> iter)

This method is supposed to construct and return a BoundingBox
(which represents a rectangle) for the blocks given by iter.

WHAT THE HECK IS AN ITERATOR?

We posted an explanation in Piazza A4 FAQ note @472

30

Class BoundingBox
31

Class BoundingBox contains methods whose
bodies you must write. This is one of the first
things to work on.
If you don’t implement the methods correctly,
nothing will work!
Think about how you can use a Junit testing class
to test these.

Advice
32

This assignment is fun and illuminating. You will
learn a lot from it.
It is harder than A3! You need time to ponder, to
ask questions, to get answers. You have to start
early!
Start reading now (if you haven’t done so
already). Get BoundingBox finished and tested
soon.
Make use of the Piazza, especially A4 FAQ note
@472.

Tree with parent pointers
33

In some applications, it is useful
to have trees in which nodes can
reference their parents

Analog of doubly-linked lists

5

4

7 8

2

Things to think about
34

What if we want to delete
data from a BST?

A BST works great as long as
it’s balanced

How can we keep it
balanced? This turns out to
be hard enough to motivate
us to create other kinds of
trees

jan

feb mar

apr may jun

jul

Tree Summary
35

¨  A tree is a recursive data structure
¤  Each node has 0 or more successors (children)
¤  Each node except the root has at exactly one predecessor

(parent)
¤  All node are reachable from the root
¤  A node with no children (or empty children) is called a leaf

¨  Special case: binary tree
¤  Binary tree nodes have a left and a right child
¤  Either or both children can be empty (null)

¨  Trees are useful in many situations, including exposing the
recursive structure of natural language and computer
programs

Suffix tree (we won’t test on these)
36

a cadabra$

abracadabra$

bra ra

cadabra$

$ dabra$

cadabra$

cadabra$ cadabra$ dabra$

$

$ $
$ bra

Suffix trees (we won’t test on these)
37

A suffix tree for a string s is a tree such that

•  each edge has a unique label, which is a nonnull substring of s
•  two edges leaving the same node have labels beginning with

different characters
•  catenation of labels along any path from root to a leaf gives a

suffix of s
•  all suffixes are represented by some path
•  the leaf of the path is labeled with the index of the first character

of the suffix in s

Suffix trees can be constructed in linear time

Suffix trees (we won’t test on these)
38

¨  Useful in string matching algorithms (e.g. longest
common substring of 2 strings)

¨  Most algorithms linear time
¨  Used in genomics (human genome is ~4GB)

Huffman trees (we won’t test on these)
39

0

0

0 0
0 0

1 1

1 1

1

1

s

e

a

e t s t a
40 63 26 197

Fixed length encoding
197*2 + 63*2 + 40*2 + 26*2 = 652

Huffman encoding
197*1 + 63*2 + 40*3 + 26*3 = 521

Huffman compression of “Ulysses”
40

¨ ' ' 242125 00100000 3 110
¨ 'e' 139496 01100101 3 000
¨ 't' 95660 01110100 4 1010
¨ 'a' 89651 01100001 4 1000
¨ 'o' 88884 01101111 4 0111
¨ 'n' 78465 01101110 4 0101
¨ 'i' 76505 01101001 4 0100
¨ 's' 73186 01110011 4 0011
¨ 'h' 68625 01101000 5 11111
¨ 'r' 68320 01110010 5 11110
¨ 'l' 52657 01101100 5 10111
¨ 'u' 32942 01110101 6 111011
¨ 'g' 26201 01100111 6 101101
¨ 'f' 25248 01100110 6 101100
¨ '.' 21361 00101110 6 011010
¨ 'p' 20661 01110000 6 011001 40

Huffman compression of “Ulysses”
41

...

¨ '7' 68 00110111 15 111010101001111
¨ '/' 58 00101111 15 111010101001110
¨ 'X' 19 01011000 16 0110000000100011
¨ '&' 3 00100110 18 011000000010001010
¨ '%' 3 00100101 19 0110000000100010111
¨ '+' 2 00101011 19 0110000000100010110
¨ original size 11904320
¨ compressed size 6822151
¨ 42.7% compression

41

BSP Trees (we won’t test on these)
42

¨  BSP = Binary Space Partition (not related to BST!)

¨  Used to render 3D images composed of polygons

¨  Each node n has one polygon p as data

¨  Left subtree of n contains all polygons on one side of p

¨  Right subtree of n contains all polygons on the other side of p

¨  Order of traversal determines occlusion (hiding)!

