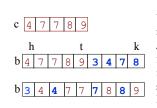


Merge two adjacent sorted segments

/* Sort b[h..k]. Precondition: b[h..t] and b[t+1..k] are sorted. */
public static merge(int[] b, int h, int t, int k) {
 Copy b[h..t] into another array c;

Copy values from c and b[t+1..k] in ascending order into b[h..]

Mergesort



}

We leave you to write this method. It is not difficult. Just have to move values from c and b[t+1..k] into b in the right order, from smallest to largest. Runs in time O(k+1-h)

Mergesort

/** Sort b[hk] */		/** Sort b[hk] */	Runtime recurrence
public static mergesort(int[] b, int h, int k]) {		public static mergesort(T(n): time to sort array of size n
if (size b[hk] < 2)		int[] b, int h, int k]) {	T(1) = 1 T(n) = 2T(n/2) + O(n)
return;	merge is $O(k+1-h)$	if (size $b[hk] < 2$)	
int t = $(h+k)/2;$		return;	Can show by induction that T(n) is O(n log n)
mergesort(b, h, t);	This is O(n log n) for	int $t = (h+k)/2;$	
mergesort(b, t+1, k);	an initial array segment of size n	mergesort(b, h, t);	Alternatively, can see that $T(n)$ is
merge(b, h, t, k); But space is O(n) also!	mergesort(b, t+1, k);	O(n log n) by looking at tree of recursive calls	
	But space is O(n) also!	merge(b, h, t, k);	

QuickSort versus MergeSort

/** Sort b[hk] */	/**
public static void QS	, pu
(int[] b, int h, int k) {	•
if (k − h < 1) return ;	i
<pre>int j= partition(b, h, k);</pre>]
QS(b, h, j-1);	1
QS(b, j+1, k);	1
}	}

/** Sort b[h..k] */
public static void MS
 (int[] b, int h, int k) {
 if (k - h < 1) return;
 MS(b, h, (h+k)/2);
 MS(b, (h+k)/2 + 1, k);
 merge(b, h, (h+k)/2, k);</pre>

One processes the array then recurses. One recurses then processes the array.

Readings, Homework

- Textbook: Chapter 4
- Homework:
 - Recall our discussion of linked lists and A2.
 - What is the worst case complexity for appending an items on a linked list? For testing to see if the list contains X? What would be the <u>best</u> case complexity for these operations?
 - If we were going to talk about complexity (speed) for operating on a list, which makes more sense: worst-case, average-case, or best-case complexity? Why?

What Makes a Good Algorithm?

Basic Step: One "constant time" operation

Suppose you have two possible algorithms or ADT implementations that do the same thing; which is better?

What do we mean by better?

- Faster?
- Less space?
- Easier to code?
- Easier to maintain?
- Required for homework?

How do we measure time and space of an algorithm?

Basic step:

- Input/output of scalar value
- Access value of scalar variable, array element, or object field
- assign to variable, array element, or object field
- do one arithmetic or logical operation
- method call (not counting arg evaluation and execution of method body)
- If-statement: number of basic steps on branch that is executed
- Loop: (number of basic steps in loop body) * (number of iterations) –also bookkeeping
- Method: number of basic steps in method body (include steps needed to prepare stack-frame)

Counting basic steps in worst-case execution

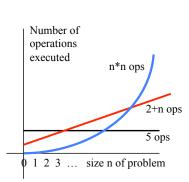
9 Lincor Sooroh	Let $n = b$.length			
Linear Search		worst-case execution		
/** return true iff v is in b */		basic step	# times executed	
<pre>static boolean find(int[] b, int v) {</pre>			i= 0;	1
for (int i = 0; i	< b.length; i++) {		i < b.length	n+1
if(b[i] == v)	U / (i++	n
}			b[i] == v	n
return false;			return true	0
l'étui li l'aise,			return false	1
}			Total	3n + 3

We sometimes simplify counting by counting only important things. Here, it's the number of array element comparisons b[i] == v. that's the number of loop iterations: n.

Sample Problem: Searching

0			
	Second solution: <i>Binary Search</i>	/** b is sorted. Return h satisfying b[0h] <= v < b[h+1] */	
	nv: p[0h] <= v < b[k]	<pre>static int bsearch(int[] b, int v) { int h= -1; int k= b.length;</pre>	
		while $(h+1 != k)$ {	
	Number of iterations (always the same):	int $e = (h+k)/2;$ if $(b[e] \le v) h = e;$	
	~log b.length Therefore,	else k= e; }	
0	log b.length arrray comparisons	return h; }	

What do we want from a definition of "runtime complexity"?

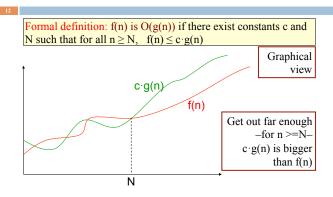


1. Distinguish among cases for large n, not small n

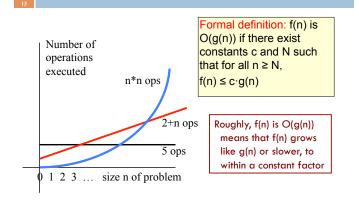
- 2. Distinguish among important cases, like
- n*n basic operations
- n basic operations
- log n basic operations
- 5 basic operations

3. Don't distinguish among trivially different cases.

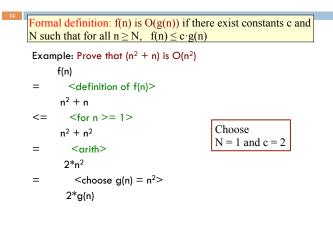
- 5 or 50 operations
- n, n+2, or 4n operations



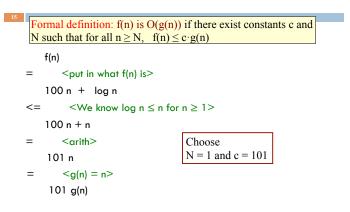
What do we want from a definition of "runtime complexity"?



Prove that $(n^2 + n)$ is $O(n^2)$



Prove that $100 n + \log n$ is O(n)



O(...) Examples

16		
Let $f(n) = 3n^2 + 6n - 7$		
\Box f(n) is O(n ²)	Only the <i>leading</i> term (the	
\square f(n) is O(n ³)	term that grows most	
\Box f(n) is O(n ⁴)	rapidly) matters	
□		
$p(n) = 4 n \log n + 34 n - 89$ $p(n) \text{ is } O(n \log n)$ $p(n) \text{ is } O(n^2)$ $h(n) = 20 \cdot 2^n + 40n$	If it's O(n ²), it's also O(n ³) etc! However, we always use the smallest one	
h(n) is $O(2^n)$ a(n) = 34 a(n) is $O(1)$		

Problem-size examples

17

Suppose a computer can execute 1000 operations per second; how large a problem can we solve?

alg	1 second	1 minute	1 hour
O(n)	1000	60,000	3,600,000
O(n log n)	140	4893	200,000
O(n ²)	31	244	1897
3n ²	18	144	1096
O(n ³)	10	39	153
O(2 ⁿ)	9	15	21

Commonly Seen Time Bounds

O(1)	constant	excellent
O(log n)	logarithmic	excellent
O(n)	linear	good
O(n log n)	n log n	pretty good
O(n ²)	quadratic	OK
O(n ³)	cubic	maybe OK
O(2 ⁿ)	exponential	too slow

Worst-Case/Expected-Case Bounds

May be difficult to determine time bounds for all imaginable inputs of size n

Simplifying assumption #4:

Determine number of steps for either

- worst-case or
- expected-case or average case

• Worst-case

• Determine how much time is needed for the *worst possible* input of size n

- Expected-case
- Determine how much time is needed on average for all inputs of size n

Simplifying Assumptions

Use the size of the input rather than the input itself -n

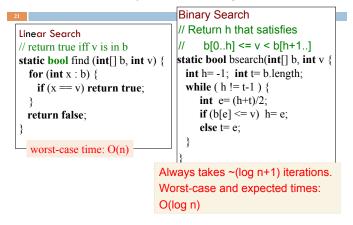
Count the number of "basic steps" rather than computing exact time

Ignore multiplicative constants and small inputs (order-of, big-O)

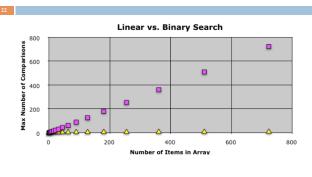
Determine number of steps for either worst-case expected-case

These assumptions allow us to analyze algorithms effectively

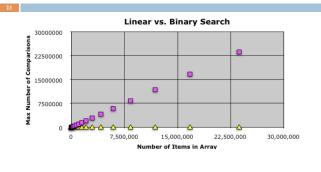
Worst-Case Analysis of Searching



Comparison of linear and binary search



Comparison of linear and binary search



Linear Search A Binary Search

Analysis of Matrix Multiplication

Multiply n-by-n matrices A and B:

Convention, matrix problems measured in terms of n, the number of rows, columns Input size is really $2n^2$, not n Worst-case time: $O(n^3)$ Expected-case time: $O(n^3)$ for (i = 0; i < n; i++)for (j = 0; j < n; j++) { c[i][j] = 0;for (k = 0; k < n; k++)c[i][j] += a[i][k]*b[k][j];

Remarks

Why bother with runtime analysis?

Once you get the hang of this, you can quickly zero in on what is relevant for determining asymptotic complexity

Example: you can usually ignore everything that is not in the innermost loop. Why?

One difficulty:

Determining runtime for recursive programs Depends on the depth of recursion Computers so fast that we can do whatever we want using simple algorithms and data structures, right?

Not really – data-structure/ algorithm improvements can be a very big win

Scenario:

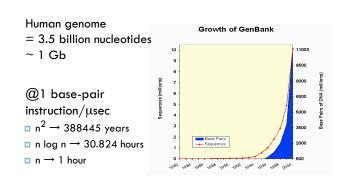
A runs in n² msec
A' runs in n²/10 msec
B runs in 10 n log n msec

Problem of size $n=10^3$ •A: $10^3 \sec \approx 17$ minutes •A': $10^2 \sec \approx 1.7$ minutes •B: $10^2 \sec \approx 1.7$ minutes

Problem of size $n=10^6$ •A: $10^9 \sec \approx 30$ years •A': $10^8 \sec \approx 3$ years •B: $2 \cdot 10^5 \sec \approx 2$ days

1 day = $86,400 \sec \approx 10^5 \sec 1,000 \text{ days} \approx 3 \text{ years}$

Algorithms for the Human Genome



Limitations of Runtime Analysis

Big-O can hide a very large constant

Example: selection

Example: small problems

The specific problem you want to solve may not be the worst case

Example: Simplex method for linear programming Your program may not be run often enough to make analysis worthwhile

- Example: one-shot vs. every day
- You may be analyzing and improving the wrong part of the program
- □Very common situation
- □Should use profiling tools

What you need to know / be able to do

- \square Know the definition of f(n) is O(g(n))
- Be able to prove that some function f(n) is O(g(n).
 The simplest way is as done on two slides.
- Know worst-case and average (expected) case O(...) of basic searching/sorting algorithms: linear/binary search, partition alg of Quicksort, insertion sort, selection sort, quicksort, merge sort.
- Be able to look at an algorithm and figure out its worst case O(...) based on counting basic steps or things like array-element swaps/

Lower Bound for Comparison Sorting

Goal: Determine minimum time required to sort *n* items

Note: we want worst-case, not best-case time

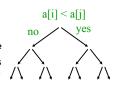
- Best-case doesn't tell us much. E.g. Insertion Sort takes O(n) time on alreadysorted input
- Want to know *worst-case time* for *best possible* algorithm
- How can we prove anything about the *best possible* algorithm?
- Want to find characteristics that are common to *all* sorting algorithms
- Limit attention to *comparison-based algorithms* and try to count number of comparisons

Comparison Trees

- Comparison-based algorithms make decisions based on comparison of data elements
- □ Gives a comparison tree

31

- If algorithm fails to terminate for some input, comparison tree is infinite
- Height of comparison tree represents worst-case number of comparisons for that algorithm
- Can show: Any correct comparisonbased algorithm must make at least n log n comparisons in the worst case



Lower Bound for Comparison Sorting

- □ Say we have a correct comparison-based algorithm
- □ Suppose we want to sort the elements in an array b[]
- □ Assume the elements of **b**[] are distinct
- Any permutation of the elements is initially possible
- □ When done, b[] is sorted

32

□ But the algorithm could not have taken the same path in the comparison tree on different input permutations

Lower Bound for Comparison Sorting

How many input permutations are possible? $n! \sim 2^{n \log n}$

For a comparison-based sorting algorithm to be correct, it must have at least that many leaves in its comparison tree

To have at least $n! \sim 2^{n \log n}$ leaves, it must have height at least $n \log n$ (since it is only binary branching, the number of nodes at most doubles at every depth)

Therefore its longest path must be of length at least n log n, and that it its worst-case running time