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Merge two adjacent sorted segments 

/* Sort b[h..k]. Precondition: b[h..t] and b[t+1..k] are sorted.  */ 
public static merge(int[] b, int h, int t, int k) { 
     Copy b[h..t] into another array c; 
     Copy values from c and b[t+1..k] in ascending order into b[h..] 
} 
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We leave you to write this 
method. It is not difficult. 
Just have to move values 
from c and b[t+1..k] into b 
in the right order, from 
smallest to largest. 
Runs in time O(k+1–h) 

Mergesort 

/** Sort b[h..k] */ 
public static mergesort(int[] b, int h, int k]) { 
    if (size b[h..k] < 2)  
          return; 
    int t= (h+k)/2; 
    mergesort(b, h, t); 
    mergesort(b, t+1, k); 
    merge(b, h, t, k); 
} 
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merge is O(k+1-h) 
 
This is O(n log n) for 
an initial array segment 
of size n 
 
But space is O(n) also! 

Mergesort 

/** Sort b[h..k] */ 
public static mergesort( 
  int[] b, int h, int k]) { 
    if (size b[h..k] < 2) 
         return; 
    int t= (h+k)/2; 
    mergesort(b, h, t); 
    mergesort(b, t+1, k); 
    merge(b, h, t, k); 
} 
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Runtime recurrence 
T(n): time to sort array of size n    
   T(1) = 1 
   T(n) = 2T(n/2) + O(n) 

Can show by induction that  
   T(n) is O(n log n) 

Alternatively, can see that T(n) is 
O(n log n) by looking at tree of 
recursive calls 
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QuickSort versus MergeSort 
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/** Sort b[h..k] */ 
public static void QS 
         (int[] b, int h, int k) { 
    if (k – h < 1) return; 
    int j=  partition(b, h, k); 
    QS(b, h, j-1);  
    QS(b, j+1, k); 
} 

/** Sort b[h..k] */ 
public static void MS 
         (int[] b, int h, int k) { 
    if (k  – h < 1) return; 
    MS(b, h, (h+k)/2);  
    MS(b, (h+k)/2 + 1, k); 
    merge(b, h, (h+k)/2, k); 
} 

One processes the array then recurses. 
One recurses then processes the array.  

Readings, Homework 

!  Textbook: Chapter 4 
!  Homework: 

! Recall our discussion of linked lists and A2. 
! What is the worst case complexity for appending an 

items on a linked list?  For testing to see if the list 
contains X?  What would be the best case complexity 
for these operations? 

!  If we were going to talk about complexity (speed) for 
operating on a list, which makes more sense: worst-case, 
average-case, or best-case complexity?  Why? 
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What Makes a Good Algorithm? 
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Suppose you have two possible algorithms or ADT 
implementations that do the same thing; which is better? 

What do we mean by better? 
!  Faster? 
!  Less space? 
!  Easier to code? 
!  Easier to maintain? 
!  Required for homework? 

How do we measure time and space of an algorithm? 

Basic Step: One “constant time” operation 
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Basic step: 
!  Input/output of scalar value 
!  Access value of scalar 

variable, array element, or 
object field 

!  assign to variable, array 
element, or object field  

!  do one arithmetic or logical 
operation 

!  method call (not counting arg 
evaluation and execution of 
method body) 

"  If-statement: number of basic 
steps on branch that is 
executed 

" Loop: (number of basic steps 
in loop body) * (number of 
iterations) –also bookkeeping 

" Method: number of basic 
steps in method body 
(include steps needed to 
prepare stack-frame) 

Counting basic steps in worst-case execution 
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/** return true iff v is in b */ 
static boolean find(int[] b, int v) { 
   for (int i = 0; i < b.length; i++) { 
      if (b[i] == v) return true; 
   } 
   return false; 
} 

Linear Search worst-case execution 
basic step        # times executed 
i= 0;                 1 
i < b.length  n+1 
i++   n 
b[i] == v          n 
return true        0 
return false       1 
Total                 3n + 3  

Let n = b.length 

We sometimes simplify counting by counting only important things. 
Here, it’s the number of array element comparisons b[i] == v. that’s 
the number of loop iterations: n. 

Sample Problem: Searching 
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/** b is sorted. Return h satisfying 
      b[0..h] <= v < b[h+1..] */ 
static int bsearch(int[] b, int v) { 

  int h= -1; 
     int k= b.length; 

  while (h+1 != k) { 
           int e= (h+ k)/2; 
           if (b[e] <= v)  h= e; 
           else k= e; 
     } 
     return h; 
}   

Second solution: 
Binary Search 

inv: 
b[0..h] <= v < b[k..] 

Number of iterations 
(always the same): 
~log b.length 
Therefore, 
log b.length 
arrray comparisons 

What do we want from a  
definition of “runtime complexity”? 
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size n of problem 0  1  2  3  … 

Number of 
operations 
executed 

5 ops 

2+n ops 

n*n ops 

1. Distinguish among cases 
for large n, not small n 

2. Distinguish among 
important cases, like 
•  n*n basic operations 
•  n basic operations 
•  log n basic operations 
•  5 basic operations 

3. Don’t distinguish among 
trivially different cases. 
•  5 or 50 operations 
•  n, n+2, or 4n operations 

Definition of O(…) 
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Formal definition: f(n) is O(g(n)) if there exist constants c and 
N such that for all n ≥ N,   f(n) ≤ c·g(n) 

c·g(n) 

f(n) 

N 

Graphical 
view 

Get out far enough 
–for n >=N– 

c·g(n) is bigger 
than f(n) 



What do we want from a  
definition of “runtime complexity”? 
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size n of problem 0  1  2  3  … 

Number of 
operations 
executed 

5 ops 

2+n ops 

n*n ops 

Formal definition: f(n) is 
O(g(n)) if there exist 
constants c and N such 
that for all n ≥ N,    
f(n) ≤ c·g(n) 

Roughly, f(n) is O(g(n)) 
means that f(n) grows 
like g(n) or slower, to 
within a constant factor 

Prove that (n2 + n) is O(n2) 

Example: Prove that (n2 + n) is O(n2) 
        f(n) 
=         <definition of f(n)> 
         n2 + n 
<=       <for n >= 1> 
         n2 + n2 
=          <arith> 
          2*n2 

=           <choose g(n) = n2> 
                2*g(n) 
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Formal definition: f(n) is O(g(n)) if there exist constants c and 
N such that for all n ≥ N,   f(n) ≤ c·g(n) 

Choose 
N = 1 and c = 2 

Prove that 100 n + log n   is   O(n) 
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      f(n) 
=         <put in what f(n) is> 

      100 n  +   log n 

<=         <We know log n ≤ n for n ≥ 1> 

      100 n + n 

=         <arith> 
     101 n 

=         <g(n) = n> 
       101 g(n) 

Formal definition: f(n) is O(g(n)) if there exist constants c and 
N such that for all n ≥ N,   f(n) ≤ c·g(n) 

Choose 
N = 1 and c = 101 

O(…) Examples 
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Let f(n) = 3n2 + 6n – 7 
! f(n) is O(n2) 
! f(n) is O(n3) 
! f(n) is O(n4) 
! … 

p(n) = 4 n log n + 34 n – 89 
! p(n) is O(n log n) 
! p(n) is O(n2) 

h(n) = 20#2n + 40n 
h(n) is O(2n) 

a(n) = 34 
! a(n) is O(1) 

Only the leading term (the 
term that grows most 
rapidly) matters 

If it’s O(n2), it’s also O(n3) 
etc!  However, we always 
use the smallest one 

Problem-size examples 
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!  Suppose a computer can execute 1000 operations 
per second; how large a problem can we solve? 

alg 1 second 1 minute 1 hour 

O(n) 1000 60,000 3,600,000 
O(n log n) 140 4893 200,000 

O(n2) 31 244 1897 
3n2 18 144 1096 

O(n3) 10 39 153 
O(2n) 9 15 21 

Commonly Seen Time Bounds 
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O(1) constant excellent 
O(log n) logarithmic excellent 

O(n) linear good 
O(n log n) n log n pretty good 

O(n2) quadratic OK 
O(n3) cubic maybe OK 
O(2n) exponential too slow 



Worst-Case/Expected-Case Bounds 
19 

May be difficult to determine 
time bounds for all imaginable 
inputs of size n 

Simplifying assumption #4: 
Determine number of steps for 
either 

!  worst-case or 

!  expected-case or 
 average case 

" Worst-case 
# Determine how much time 
is needed for the worst 
possible input of size n 

" Expected-case 
# Determine how much time 
is needed on average for 
all inputs of size n 

Simplifying Assumptions 
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Use the size of the input rather than the input itself – n 

Count the number of �basic steps� rather than computing exact 
time 

Ignore multiplicative constants and small inputs  
(order-of, big-O) 

Determine number of steps for either 
! worst-case 
! expected-case 

These assumptions allow us to analyze algorithms effectively 

Worst-Case Analysis of Searching 
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Linear Search  
// return true iff v is in b 
static bool find (int[] b, int v) { 
   for (int x : b) { 
      if (x == v) return true; 
   } 
   return false; 
} 
   

Binary Search 
// Return h that satisfies 
//      b[0..h] <= v < b[h+1..] 
static bool bsearch(int[] b, int v {  
   int h= -1;  int t= b.length; 
   while ( h != t-1 ) { 
        int  e= (h+t)/2; 
        if (b[e] <= v)  h= e; 
        else t= e; 
   } 
}   

Always takes ~(log n+1) iterations. 
Worst-case and expected times: 
O(log n) 

worst-case time: O(n) 

Comparison of linear and binary search 
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Comparison of linear and binary search 
23 

Analysis of Matrix Multiplication 
24 

Multiply n-by-n  matrices A and B: 

Convention, matrix problems measured in terms of 
n, the number of rows, columns 
# Input size is really 2n2, not n 
# Worst-case time: O(n3) 
# Expected-case time:O(n3) 

for (i = 0; i < n; i++) 
   for (j = 0; j < n; j++) { 
       c[i][j] = 0; 
       for (k = 0; k < n; k++) 

 c[i][j] += a[i][k]*b[k][j]; 
   } 



Remarks 
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Once you get the hang of this, you can quickly zero in on what is 
relevant for determining asymptotic complexity 

!  Example: you can usually ignore everything that is not in the 
innermost loop.  Why? 

One difficulty: 
!  Determining runtime for recursive programs 
  Depends on the depth of recursion 

Why bother with runtime analysis? 
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Computers so fast that we 
can do whatever we want 
using simple algorithms and 
data structures, right? 
Not really – data-structure/
algorithm improvements can 
be a very big win 
Scenario: 

! A runs in n2 msec 
! A' runs in n2/10 msec 
! B runs in 10 n log n msec 

Problem of size n=103 

# A: 103 sec ≈ 17 minutes 
# A': 102 sec ≈ 1.7 minutes 
# B: 102 sec ≈ 1.7 minutes 
Problem of size n=106 

# A: 109 sec ≈ 30 years 
# A': 108 sec ≈ 3 years 
# B: 2·105 sec ≈ 2 days 

1 day = 86,400 sec ≈ 105 sec 
1,000 days ≈ 3 years 

Algorithms for the Human Genome 
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Human genome  
= 3.5 billion nucleotides  
~ 1 Gb 

@1 base-pair 
instruction/µsec 
!  n2 � 388445 years 
!  n log n � 30.824 hours 
!  n � 1 hour 

Limitations of Runtime Analysis 

Big-O can hide a very 
large constant 

! Example: selection 
! Example: small problems 

The specific problem you 
want to solve may not be 
the worst case 

! Example: Simplex method 
for linear programming 

 Your program may not be 
run often enough to make 
analysis worthwhile 

!  Example:  
one-shot vs. every day 

!  You may be analyzing 
and improving the wrong 
part of the program 

! Very common situation 
! Should use profiling tools 
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What you need to know / be able to do 
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!  Know the definition of f(n) is O(g(n)) 

!  Be able to prove that some function f(n) is O(g(n). 
The simplest way is as done on two slides. 

!  Know worst-case and average (expected) case 
O(…) of basic searching/sorting algorithms: 
linear/binary search, partition alg of Quicksort, 
insertion sort, selection sort, quicksort, merge sort. 

!  Be able to look at an algorithm and figure out its 
worst case O(…) based on counting basic steps or 
things like array-element swaps/ 
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Lower Bound for Comparison Sorting 

Goal: Determine minimum 
time required to sort n items 

Note: we want worst-case, 
not best-case time 
! Best-case doesn�t tell us 

much. E.g. Insertion Sort 
takes O(n) time on already-
sorted input 

! Want to know worst-case 
time for best possible 
algorithm 

" How can we prove anything 
about the best possible 
algorithm? 

# Want to find characteristics that 
are common to all sorting 
algorithms 

# Limit attention to comparison-
based algorithms and try to 
count number of comparisons 
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Comparison Trees 

!  Comparison-based algorithms make 
decisions based on comparison of 
data elements 

!  Gives a comparison tree 
!  If algorithm fails to terminate for 

some input, comparison tree is infinite 
!  Height of comparison tree represents 

worst-case number of comparisons for 
that algorithm 

!  Can show: Any correct comparison-
based algorithm must make at least 
n log n comparisons in the worst case 

a[i] < a[j] 
yes no 
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Lower Bound for Comparison Sorting 

!  Say we have a correct comparison-based algorithm 

!  Suppose we want to sort the elements in an array b[] 

!  Assume the elements of b[] are distinct 

!  Any permutation of the elements is initially possible 

!  When done, b[] is sorted 

!  But the algorithm could not have taken the same path in 
the comparison tree on different input permutations 
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Lower Bound for Comparison Sorting 

How many input permutations are possible?  n! ~ 2n log n 

For a comparison-based sorting algorithm to be correct, it 
must have at least that many leaves in its comparison tree  

To have at least n! ~ 2n log n leaves, it must have height at 
least n log n (since it is only binary branching, the number 
of nodes at most doubles at every depth) 

Therefore its longest path must be of length at least  
n log n, and that it its worst-case running time 


