

We may not cover all this material

SEARCHING AND SORTING HINT AT ASYMPTOTIC COMPLEXITY

Lecture 9

 CS2110 - Spring 2015Binary search: find position h of $v=5$

Binary search: an $O(\log n)$ algorithm
Search array with 32767 elements, only 15 iterations!

Bsearch:

$\mathrm{h}=-1 ; \mathrm{t}=\mathrm{b}$.length;
while ($\mathrm{h}!=\mathrm{t}-1$) \{
int $\mathrm{e}=(\mathrm{h}+\mathrm{t}) / 2$;
if $(\mathrm{b}[\mathrm{e}]<=\mathrm{v}) \mathrm{h}=\mathrm{e}$;
else $t=e$;
\}
Each iteration takes constant time
(a few assignments and an if).

If $n=2^{k}, k$ is called $\log (n)$ That's the base $2 \operatorname{logarithm}$ \mathbf{n} $1=2^{0}$ $\log (\mathbf{n})$ $2=2^{1}$$\quad 0$
$4=2^{2}$
$8=2^{3}$
$31768=2^{15}$

Bsearch executes $\sim \log n$ iterations for an array of size n. So the number of assignments and if-tests made is proportional to $\log \mathrm{n}$. Therefore, Bsearch is called an order $\log \mathrm{n}$ algorithm, written $\mathrm{O}(\log \mathrm{n})$. (We'll formalize this notation later.)

Last lecture: binary search

0					
h		t			
inv: b					
$<=\mathrm{v}$				$?$	$>\mathrm{v}$

h= -1; t= b.length;
h= -1; t= b.length;
while (h != t-1) {
while (h != t-1) {
int e= (h+t)/2;
int e= (h+t)/2;
if (b[e]<= v) h= e;
if (b[e]<= v) h= e;
else t=e;
else t=e;
}
}

Methodology:

1. Draw the invariant as a combination of pre and post
2. Develop loop using 4 loopy questions.

Practice doing this!

Binary search: an $O(\log n)$ algorithm

$\mathrm{h}=-1 ; \mathrm{t}=\mathrm{b}$.length;
while ($\mathrm{h}!=\mathrm{t}-1$) \{
int $\mathrm{e}=(\mathrm{h}+\mathrm{t}) / 2$;
if $(\mathrm{b}[\mathrm{e}]<=\mathrm{v}) \mathrm{h}=\mathrm{e}$;
else $t=e$;
\}

Initially $\mathrm{t}-\mathrm{h}=2^{\mathrm{k}}$
Loop iterates
exactly k times

Suppose initially: b.length $=2^{\mathrm{k}}-1$
Initially, $\mathrm{h}=-1, \mathrm{t}=2^{\mathrm{k}}-1, \mathrm{t}-\mathrm{h}=2^{\mathrm{k}}$
Can show that one iteration sets h or t so that $\mathrm{t}-\mathrm{h}=2^{\mathrm{k}-1}$
e.g. Set e to $(\mathrm{h}+\mathrm{t}) / 2=\left(2^{\mathrm{k}}-2\right) / 2=2^{\mathrm{k}-1}-1$

Set t to e, i.e. to $2^{k-1}-1$
Then $\mathrm{t}-\mathrm{h}=2^{\mathrm{k}-1}-1+1=2^{\mathrm{k}-1}$
Careful calculation shows that:
each iteration halves $\mathrm{t}-\mathrm{h}$!!

Linear search: Find first position of v in b (if present)

Linear search: Find first position of v in b (if present)
pre:

and $\mathrm{h}=\mathrm{n}$ or $\mathrm{b}[\mathrm{h}]=\mathrm{v}$

Worst case: for array of size n , requires n iterations, each taking constant time.
Worst-case time: $\mathrm{O}(\mathrm{n})$.
Expected or average time? $\mathrm{n} / 2$ iterations. $\mathrm{O}(\mathrm{n} / 2)$-is also O(n)

Looking at execution speed Process an array of size n

What to do in each iteration?

inv:

$\mathrm{v}: \quad \mathrm{b}$| 0 | i | |
| :--- | :--- | :---: |
| sorted | ? | | b.length

e.g.
\(\left.\begin{array}{r}\begin{array}{r}Loop

body

(inv true

before

and after)\end{array}\end{array}\right\}\)| 2 | 5 | 5 | 5 | 3 | 7 | $?$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 5 | 5 | 3 | 5 | 7 | $?$ |
| 2 | 5 | 3 | 5 | 5 | 7 | $?$ |
| 2 | 3 | 5 | 5 | 5 | 7 | $?$ |

Push b[i] to its sorted position in $\mathrm{b}[0 . . \mathrm{i}]$, then increase i

InsertionSort

$/ /$ sort b[] , an array of int
$/ /$ inv: $\mathrm{b}[0 . . \mathrm{i}-1]$ is sorted
for (int $\mathrm{i}=0 ; \mathrm{i}<\mathrm{b}$.length; $\mathrm{i}=\mathrm{i}+1)$ \{
\quad Push $\mathrm{b}[\mathrm{i}]$ to its sorted position in $\mathrm{b}[0 . . \mathrm{i}]$
$\}$

Takes time proportional to number of swaps. Finding the right place for $b[i]$ can take i swaps. Worst case takes

Let $\mathrm{n}=\mathrm{b}$.length

$$
1+2+3+\ldots \mathrm{n}-1=(\mathrm{n}-1)^{*} \mathrm{n} / 2
$$

swaps.

> - Worst-case: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ (reverse-sorted input)
> - Best-case: $\mathrm{O}(\mathrm{n})$ (sorted input)
> - Expected case: $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Many people sort cards this way Works well when input is nearly sorted

Note English statement in body. Abstraction. Says what to do, not how.

This is the best way to present it. Later, we can figure out how to implement it with a loop
// sort b[], an array of int
// inv: b[0..i-1] is sorted
for (int $\mathrm{i}=0 ; \mathrm{i}<\mathrm{b}$.length; $\mathrm{i}=\mathrm{i}+1$) \{
Push $\mathrm{b}[\mathrm{i}]$ to its sorted position in $\mathrm{b}[0 . . \mathrm{i}]$
\}

SelectionSort

Additional
term in
Keep invariant true while making progress? invariant

Increasing i by 1 keeps inv true only if $b[i]$ is min of $b[i .$.

QuickSort: a recursive algorithm

pre: $\mathrm{b} \quad 0 \quad$?

\[

\]

SelectionSort

//sort b[], an array of int // inv: b[0..i-1] sorted			Another common way for people to sort cards
$\mathrm{b}[0 . \mathrm{i}-1]<=\mathrm{b}[\mathrm{i}$. . $]$			
```for (int i= 0; i < b.length; i= i+1) { int m= index of minimum of b[i..]; Swap b[i] and b[m];```			- Worst-case $O\left(n^{2}\right)$   - Best-case $O\left(n^{2}\right)$   - Expected-case O( $\mathrm{n}^{2}$ )
\}			
			length
	sorted, smaller values		values

## Partition algorithm of QuickSort

Idea Using the pivot value x that is in $\mathrm{b}[\mathrm{h}]$ :
pre:

x is called the pivot

Swap array values around until b[h..k] looks like this:



## Partition algorithm


post:
$>=\mathrm{X}$

Combine pre and post to get an invariant


## Partition algorithm

Partition algorithm


$\mathrm{j}=\mathrm{h} ; \mathrm{t}=\mathrm{k}$; while ( $\mathrm{j}<\mathrm{t}$ ) \{ if $(\mathrm{b}[\mathrm{j}+1]<=\mathrm{b}[\mathrm{j}])$ \{
// Append $\mathrm{b}[\mathrm{j}+1]$ to prefix
Swap $\mathrm{b}[\mathrm{j}+1]$ and $\mathrm{b}[\mathrm{j}] ; \mathrm{j}=\mathrm{j}+1$; \} else \{
// Prepend b[j+1] to suffix
Swap $\mathrm{b}[\mathrm{j}+1]$ and $\mathrm{b}[\mathrm{t}] ; \mathrm{t}=\mathrm{t}-1$; \}
\}

Initially, with $\mathrm{j}=\mathrm{h}$ and $t=k$, this diagram looks like the start diagram

Terminate when $\mathrm{j}=\mathrm{t}$, so the "?" segment is empty, so diagram looks like result diagram

Takes linear time: $\mathrm{O}(\mathrm{k}+1-\mathrm{h})$
pre:

20	31	24	19	45	56	4	20
20	20	24	19	45	56	4	31
20	20	24	19	45	56	4	31
20	20	4	19	45	56	24	31
20	4	20	19	45	56	24	31
20	4	19	20	45	56	24	31
20	4	19	20	56	45	24	31
20	4	19	20	56	45	24	31

## QuickSort procedure

```
/** Sort b[h..k]. */
public static void QS(int[] b, int h, int k) {
 if (b[h..k] has < 2 elements) return;
 int j= partition(b, h, k);
```

Worst-case: quadratic Average-case: O(n $\log \mathrm{n})$
// We know $\mathrm{b}[\mathrm{h} . \mathrm{j}-1]<=\mathrm{b}[\mathrm{j}]<=\mathrm{b}[\mathrm{j}+1 . \mathrm{k}]$
// Sort b[h..j-1] and b[j+1..k]
QS(b, h, j-1); QS(b, j+1, k);

Worst-case space: O(n)! --depth of recursion can be $n$
Can rewrite it to have space $O(\log n)$
Average-case: $\mathrm{O}(\log \mathrm{n})$

Worst case quicksort: pivot always smallest value 23 .


x 0		$>=\mathrm{x} 0$
j		
x 0	x 1	$>=\mathrm{x} 1$


| j |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| x 0 | x 1 | x 2 | $>=\mathrm{x} 2$ |

partioning at depth 0
partioning at depth 1
partioning at depth 2

```
/** Sort b[h..k]. */
```

public static void $\mathrm{QS}($ int [] b , int h , int k$)$ \{
if (b[h..k] has < 2 elements) return; Base case
int $\mathrm{j}=\operatorname{partition}(\mathrm{b}, \mathrm{h}, \mathrm{k})$;
// We know $\mathrm{b}[\mathrm{h} . \mathrm{j}-1]<=\mathrm{b}[\mathrm{j}]<=\mathrm{b}[\mathrm{j}+1 . . \mathrm{k}]$
// Sort b[h.j-1] and b[j+1..k]

QS(b, h, j-1); QS(b, j+1, k);
\}

Function does the partition algorithm and returns position j of pivot

Best case quicksort: pivot always middle value


Max depth: about $\log \mathrm{n}$. Time to partition on each level: $\sim \mathrm{n}$ Total time: $\mathrm{O}(\mathrm{n} \log \mathrm{n})$.

Average time for Quicksort: $\mathrm{n} \log \mathrm{n}$. Difficult calculation

## QuickSort

QuickSort was developed by Sir Tony Hoare, who received the Turing Award in 1980.

He developed QuickSort in 1958, but could not explain it to his colleague, and gave up on it.

Later, he saw a draft of the new language Algol 68 (which became Algol 60). It had recursive procedures, for the first time in a programming language. "Ah!," he said. "I know how to write it better now." 15 minutes later, his colleague also understood it.

## Partition algorithm

Key issue:	Choosing pivot
How to choose a pivot?	- Ideal pivot: the median, since
	it splits array in half
	But computing median of
	unsorted array is O(n), quite
	complicated
	Popular heuristics: Use
	\&irst array value (not good)
	middle array value
	median of first, middle, last,
	values GOOD!
	$\bullet$ Choose a random element

## QuickSort with logarithmic space

```
/** Sort b[h..k]. */
public static void QS(int[] b, int h, int k) {
 int hl= h; int kl= k;
 // invariant b[h..k] is sorted if b[h1..k1] is sorted
 while (b[h1..k1] has more than 1 element) {
 Reduce the size of b[h1..k1], keeping inv true
 }
 }
```


## QuickSort with logarithmic space

```
 /** Sort b[h..k]. */
 public static void QS(int[] b, int h, int k) {
 int h1= h; int kl= k;
 // invariant b[h..k] is sorted if b[h1..k1] is sorted
 while (b[h1..k1] has more than 1 element) {
 int j= partition(b, h1, k1);
 // b[h1..j-1] <= b[j] <= b[j+1..k1]
 if (b[h1..j-1] smaller than b[j+1..k1])
```

Only the smaller segment is sorted recursively. If $b[h 1 . . \mathrm{k} 1]$ has size n , the smaller segment has size $<\mathrm{n} / 2$.

Therefore, depth of recursion is at most $\log n$

