4/21/15

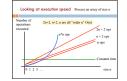
BEARCHING AND SORTING HATL AT ASYMPTIONIC COMPLEXITY MATCH AT ASYMPTIONIC COMPLEXITY	$\label{eq:result} \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Broory search find position h of x = 5 regressing to under the final search find and the final search fi	$\begin{array}{ c } \hline \hline \\ $
$\label{eq:constraint} \begin{array}{llllllllllllllllllllllllllllllllllll$	Linear search find first position of v in b (if present) pre-b $\frac{1}{2}$

31768

in iterations for an array of size n. So the s and if-tests made is proportional to log n called an order log n alsorithm, written

				1.1	set t	to c.	i.e.	to 2	k-1_	1				
tially	r. b	= 24			Ther	. t - İ		2 ^{k-1}	-13	1 =	2 ^{k-1}			
op iter				Ci	refu	l cal	relat	ions	how	s tha	6			
actly k	tim	8			cac	h iter	10	n hal	ves t	-h				
			_	_									_	
ear s	ear	ch:	Find	d fir	st p	oosit	tion	of	v in	ь (lf p	resent	1)	
										_			-	
0					b.le	uch				0		h	n	
ь	?			Ľ.		-0		pos	tь	V BC	x he	rc ?	ĩ.	
0		1	1	_						11		r b[h] =		
byz	tot he	rc	?	1								oful -		
_	h = 0	_	-											
d 5				5		6			10	11	12	1		
		h - 1										·		
	1	4	4	5	6	6			10	11	12	1		
	_							-		_				

h=2 1 4 4 5 6 6 8 8 10 11 12


h=3 1 4 4 5 6 6 8 8 10 11 12

Linear search: Find first position of v in b (if present) post: b v not here ? and h = n or b[h] = v re: b ? n * b.length Worst case: for array of size n, requires n iterations, each taking constant time. Worst-case time: O(n). Expected or average time? n/2 iterations. O(n/2) —is also O(n)

InsertionSort

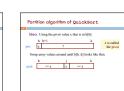
sort b[], an array of int inv: b[0.i-1] is sceted r (int i= 0; i < b.length; i= i+1) { Push b[i] to its sorted position in

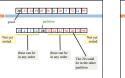
Many people sort cards this way Works well when input is nearly sorted

Ins	ertionSort			Whe
pre: post:	b Control	? sorted i	b.length b.length b.length	e.g. b 2 5 5
inv: or: inv:	b sorted b[0.:-1] is sorted 0 i b processed	? b length	A loop that processes elements of an array in increasing order has this invariant	body (inv true bad after) b 2 3 5

Note English statement in body. Abstraction. Says what to do, not how.

This is the best way to present it. Later, we can figure out how to implement it with a loop


nat to do in each iteration? b.length ned 573 Push b[i] to its sorted position in b[0.i], then increase i 3557 35557? i 5 5 7 Ľ


InsertionSort // seet b(], an array of int // inv: b(0..i-1) is seeted for (int i= 0; i ≤ b.length; i= i+1) { Push b[i] to its sorted position in (reverse-sorted i Best-case: O(n) (sorted input) Takes time proportional to number of swaps. Finding the right place for b(i) can take i swaps. Worst case takes $1 + 2 + 3 + \dots n - 1 = (n-1)^n n^2$ swaps. Let n = b.length

[%eet b[], an array of int // inv: b[0, i-1] sorted // b[0, i-1] <= b[] for (int i= 0; i < b.length; i= i+1) { int m= index of minimum of b[i,]:	Another common way f people to sort cards Runtime • Worst-case O(r ²) • Best-case O(r ²)
Swap b(i) and b(m);	Expected-case O(n ²) length er values

	Partition algorithm	
		-
	h h+1 k	
	h j k	
	post: b <= x x >= x	
	Combine pre and post to get an invariant	
	h i t k	
	b = x x ? >= x	

1

4/21/15

4

QuickSort procedur	e
/** Sort b[h.k]. */ public static void QS(int[] b, in if (b[h.k] has < 2 elements) r	
int j= partition(b, h, k); // We know b[h.j–1] <= b[j = b[j+1.k]
// Sort b[h.j-1] and b[j+1.1	4
QS(b, h, j-1); QS(b, j+1, k); }	Function does the partition algorithm and returns position j of pivot

Worst case quicksort: pivot always smallest value	Best case
	100
j $x0$ $y \rightarrow = x0$ particizing at depth 0 $x0$ $x1$ $y \rightarrow = x1$ particizing at depth 1	0 <= x0
j x0 x1 x2 >= x2 partioning at depth 2	
	Max depth: abc Total time: O(r Average tim

	20	20	24	19	45	56	4	
,	20							
	20							
post:	20 20							
1	-				-		-	

 $\label{eq:second} \begin{array}{l} d = & \\ m^{2} \operatorname{Sert}(b_{1}^{2},b_{1}^{2}) \\ m^{2} \operatorname{Sert}(b_{2}^{2},b_{1}^{2}) \\ m^{2} \operatorname{Sert}(b_{2}^{2},b_{1}^{2},b_{1}^{2}) \\ m^{2} \operatorname{Sert}(b_{2}^{2},b_{1}^{2},b_{1}^{2}) \\ m^{2} \operatorname{Sert}(b_{2}^{2},b_{1}^{2},b_{1}^{2}) \\ m^{2} \operatorname{Sert}(b_{2}^{2},b_{1}^{2},b_{1}^{2},b_{1}^{2}) \\ m^{2} \operatorname{Sert}(b_{2}^{2},b_{1}^{2},b_{1}^{2},b_{1}^{2}) \\ m^{2} \operatorname{Sert}(b_{2}^{2},b_{1}$

0 j n ⊲=x0 x0 >=x0	depth 0. 1 segment of size ~n to partition.
${\scriptstyle <=} x1 x1 {\scriptstyle >=} x1 x0 {\scriptstyle <=} x2 x2 {\scriptstyle >=} x2$	Depth 2. 2 segments o size ~n/2 to partition.
	Depth 3. 4 segments o size ~n/4 to partition.
Max depth: about log n. Time to partitio Total time: O(n log n).	n on each level: ~n

OuickSert was develops	d her Sie Terry Harry	(1997)
who received the Turing		A COLUMN TO A
He developed OuickSee	in 1968 has made and	Clore .
explain it to his colleage		and the second s
Later, he saw a draft of	des more la more de la col	and the second
68 (which became Algo		
procedures, for the first		
language. "Ah!," he said it better now." 15 minut		
also understood it.		

	Choosing pivot
Key issue:	
How to choose a pivor?	 Ideal pivot: the median, since
	it splits array in half
	But computing median of
	unsorted array is O(n), quite
	complicated
	Popular heuristics: Use
	· first array value (not good)
	 middle array value
	· median of first, middle, last,
	values GOOD!
	 Choose a random element

QuickSort with logarithmic space	
/** Sort blh. kl. */	
public static void OS(int[] b, int h, int k) (
int hl=h; int kl=k;	
// invariant b[h.k] is sorted if b[h1.k1] is sorted	
while (b[h1k1] has more than 1 element) {	
Reduce the size of b[h1.k1], keeping inv true	
4	
1	

ert with logarithmic space		
*/ d QS(int[]b, int h, int h) { k1=k; k1=scred if h(h1,k1) is sorted i] has recerban 1 element) { timesh b1, k1; b2;		
$\begin{array}{l} = b(j) = b(j+1,k1) \\ = b(j) = b(j+1,k1) \\ = malic than b(j+1,k1) \\ b, b, j+1; \ h1 = j+1; \\ \\ h, j+1, k1 \\ ; \ k1 = j-1; \\ \end{array}$	Only the smaller segment is sorted recursively. If b[h1.k1] has size n, the smaller segment has size < n/2. Therefore, depth of recursion is at most log n	

2

4/21/15

5

3