
CORRECTNESS ISSUES
AND LOOP INVARIANTS

Lecture 8
CS2110 – Spring 2015

The next several lectures
2

Study algorithms for searching and sorting arrays.
Investigate their complexity –how much time and space they take
“Formalize” the notions of average-case and worst-case complexity

We want you to know these algorithms
•  Not by memorizing code but by
•  Being able to develop the algorithms from their

specifications and, when necessary, a small idea

We give you some guidelines and instructions on how to
develop an algorithm from its specification.
Deal mainly with developing loops.

Many (most) of you could use instruction on
developing algorithms, keeping things simple

3

String[] dummy = s.split(""); // turns s into string array
int len = s.length()-1; // length of string s
String a = “”; // will be reverse of s

for (int b = len; b > -1; b--){
 a= a.dummy[b];
 }

if (s.equals(a)) return true;
else return false;

This submitted code for
body of isPalindrome

didn’t work because split
wasn’t used properly –
and it wasn’t debugged

Why calculate the
reverse of s? return s.equals(b)

Some principles and strategies for development
4

•  Don’t introduce a variable without a good reason.
•  Put local variables as close to their first use as possible.
•  Structure expressions to make them readable.
•  Make the structure of the program reflect the structure of the data.
•  Never have lots of syntax errors.
•  Intersperse coding and testing: code a little, test a little.
•  Write the class invariant while putting in field declarations.
•  Write a method spec before writing the method body.
•  Use assert statements to check method preconditions –as along as

it doesn’t complicate program too much and doesn’t change the
time-complexity of the method.

Show development of isPalindrome
5

/** Return true iff s is a palindrome */
public static boolean isPalindrome(String s)

Our instructions said to visit each char of s only once!

isPalindrome: Set ispal to “s is a palindrome”
(forget about returns for now. Store value in ispal.

6

Think of checking equality of outer chars, then chars
inside them, then chars inside them, etc.

bac … cab s
0 s.length()

Key idea:
Generalize this to a picture that is true before/after each iteration

isPalindrome: Set ispal to “s is a palindrome”
(forget about returns for now. Store value in ispal.

7

bac … cab s
0 s.length()

 ? s
0 s.length()

These sections are each others’ reverse

h k

Generalize to a picture that is true before/after each iteration

isPalindrome: Set ispal to “s is a palindrome”
8

 ? s
0 s.length()

These sections are each others’ reverse

h k

int h= 0;
int k= s.length() – 1;
// s[0..h-1] is the reverse of s[k+1..]

Initialization to make picture true

while () {

}

h < k && s.charAt(h) == s.charAt(k)
h= h+1; k= k-1;

ispal= h >= k;

Stop when result is known
Continue when it’s not

Make progress toward termination
AND keep picture true

/** Return true iff s is a palindrome */
public static boolean isPal(String s) {
 int h= 0; int k= s.length() – 1;
 // invariant: s[0..h-1] is reverse of s[k+1..]
 while (h < k) {
 if (s.charAt(h) != s.charAt(k))
 return false;
 h= h+1; k= k-1;
 }
 return true;
}

isPalindrome
9

 ? s
0 s.length()

These sections are each others’ reverse

h k

Loop invariant —
invariant because

it’s true before/
after each loop

iteration

Engineering principle
10

Break a project up into parts, making them as
independent as possible. When the parts are constructed,
put them together.

Each part can be understood by itself, without
mentioning the others.

Reason for introducing loop invariants
11

Given c >= 0, store b^c in x
z= 1; x= b; y= c;
while (y != 0) {
 if (y is even) {
 x= x*x; y= y/2;
 } else {
 z= z*x; y= y - 1;
 }
}
{z = b^c}

Algorithm to compute b^c.

Can’t understand any piece of it
without understanding all.
In fact, only way to get a handle
on it is to execute it on some
test case.

Need to understand initialization without
looking at any other code.
Need to understand condition y != 0
without looking at loop body
Etc.

Invariant: is true before and after each iteration
12

initialization;
// invariant P
 while (B) {S}

“invariant” means unchanging. Loop invariant: an assertion
—a true-false statement— that is true before and after each
iteration of the loop —every time B is to be evaluated.
Help us understand each part of loop without looking at all
other parts.

init B S
true

false

{P}

{P and ! B} Upon termination, we
know P true, B false

Simple example to illustrate methodology
13

Store sum of 0..n in s
Precondition: n >= 0
// { n >= 0}
k= 1; s= 0;
// inv: s = sum of 0..k-1 &&
// 0 <= k <= n+1
while (k <= n) {
 s= s + k;
 k= k + 1;
}
{s = sum of 0..n}

First loopy question.
Does it start right?
Does initialization make
invariant true?

Yes!
 s = sum of 0..k-1
= <substitute initialization>
 0 = sum of 0..1-1
= <arithmetic>
 0 = sum of 0..0

We understand initialization
without looking at any other code

Simple example to illustrate methodology
14

Store sum of 0..n in s
Precondition: n >= 0
// { n >= 0}
k= 1; s= 0;
// inv: s = sum of 0..k-1 &&
// 0 <= k <= n+1
while (k <= n) {
 s= s + k;
 k= k + 1;
}
{s = sum of 0..n}

Second loopy question.
Does it stop right?
Upon termination, is
postcondition true?

Yes!
 inv && ! k <= n
=> <look at inv>
 inv && k = n+1
=> <use inv>
 s = sum of 0..n+1-1

We understand that postcondition is true
without looking at init or repetend

Simple example to illustrate methodology
15

Store sum of 0..n in s
Precondition: n >= 0
// { n >= 0}
k= 1; s= 0;
// inv: s = sum of 0..k-1 &&
// 0 <= k <= n+1
while (k <= n) {
 s= s + k;
 k= k + 1;
}
{s = sum of 0..n}

Third loopy question.
Progress?
Does the repetend make
progress toward termination?

Yes! Each iteration
increases k, and when it gets
larger than n, the loop
terminates

We understand that there is no infinite
looping without looking at init and
focusing on ONE part of the repetend.

Simple example to illustrate methodology
16

Store sum of 0..n in s
Precondition: n >= 0
// { n >= 0}
k= 1; s= 0;
// inv: s = sum of 0..k-1 &&
// 0 <= k <= n+1
while (k <= n) {
 s= s + k;
 k= k + 1;
}
{s = sum of 0..n}

Fourth loopy question.
Invariant maintained by each
iteration?
Is this property true?
 {inv && k <= n} repetend {inv}

Yes!

{s = sum of 0..k-1}
 s= s + k;
{s = sum of 0..k}
 k= k+1;
{s = sum of 0..k-1}

4 loopy questions to ensure loop correctness
17

{precondition Q}
init;
// invariant P
while (B) {
 S
}
{R}

First loopy question;
Does it start right?
Is {Q} init {P} true?

Second loopy question:
Does it stop right?
Does P && ! B imply R?

Third loopy question:
Does repetend make progress?
Will B eventually become false?

Fourth loopy question:
Does repetend keep invariant true?
Is {P && ! B} S {P} true?

Four loopy
questions: if
answered yes,
algorithm is
correct.

Note on ranges m..n
18

Range m..n contains n+1–m ints: m, m+1, ..., n
(Think about this as “Follower (n+1) minus First (m)”)
2..4 contains 2, 3, 4: that is 4 + 1 – 2 = 3 values
2..3 contains 2, 3: that is 3 + 1 – 2 = 2 values
2..2 contains 2: that is 2 + 1 – 2 = 1 value
2..1 contains : that is 1 + 1 – 2 = 0 values
Convention: notation m..n implies that m <= n+1
Assume convention even if it is not mentioned!
If m is 1 larger than n, the range has 0 values

b

m n

array segment b[m..n]:

Can’t understand this example without invariant!
19

Given c >= 0, store b^c in z

z= 1; x= b; y= c;
// invariant y >= 0 &&
// z*x^y = b^c
while (y != 0) {
 if (y is even) {
 x= x*x; y= y/2;
 } else {
 z= z*x; y= y - 1;
 }
}
{z = b^c}

First loopy question.
Does it start right?
Does initialization make
invariant true?

Yes!
 z*x^y
= <substitute initialization>
 1*b^c
= <arithmetic>
 b^c

We understand initialization
without looking at any other code

For loopy questions to reason about invariant
20

Given c >= 0, store b^c in x

z= 1; x= b; y= c;

while (y != 0) {
 if (y is even) {
 x= x*x; y= y/2;
 } else {
 z= z*x; y= y - 1;
 }
}
{z = b^c}

Second loopy question.
Does it stop right?
When loop terminates,
is z = b^c?

Yes! Take the invariant, which is
true, and use fact that y = 0:
 z*x^y = b^c
= <y = 0>
 z*x^0 = b^c
= <arithmetic>
 z = b^c

We understand loop condition
without looking at any other code

// invariant y >= 0 AND
// z*x^y = b^c

For loopy questions to reason about invariant
21

Given c >= 0, store b^c in x

z= 1; x= b; y= c;
// invariant y >= 0 AND
// z*x^y = b^c
while (y != 0) {
 if (y is even) {
 x= x*x; y= y/2;
 } else {
 z= z*x; y= y - 1;
 }
}
{z = b^c}

Third loopy question.
Does repetend make progress
toward termination?

Yes! We know that y > 0 when
loop body is executed. The loop
body decreases y.

We understand progress without
looking at initialization

For loopy questions to reason about invariant
22

Given c >= 0, store b^c in x

z= 1; x= b; y= c;
// invariant y >= 0 AND
// z*x^y = b^c
while (y != 0) {
 if (y is even) {
 x= x*x; y= y/2;
 } else {
 z= z*x; y= y - 1;
 }
}
{z = b^c}

Fourth loopy question.
Does repetend keep invariant
true?

Yes! Because of properties:

•  For y even, x^y = (x*x)^(y/2)
•  z*x^y = z*x*x^(y-1)

We understand invariance without
looking at initialization

Develop binary search for v in sorted array b

23

 ? pre: b
0 b.length

post: b
0 h b.length
 <= v > v

 2 2 4 4 4 4 7 9 9 9 9 pre: b
0 4 5 6 7 b.length

Example:

If v is 4, 5, or 6, h is 5 If v is 7 or 8, h is 6

If v in b, h is index of rightmost occurrence of v.
If v not in b, h is index before where it belongs.

Develop binary search in sorted array b for v

24

 ? pre: b
0 b.length

post: b
0 h b.length
 <= v > v

Get loop invariant by combining pre- and post-
conditions, adding variable t to mark the other boundary

inv: b
0 h t b.length
 <= v ? > v

Store a value in h to make this true:

How does it start (what makes the invariant true)?

25

 ? pre: b
0 b.length

inv: b
0 h t b.length
 <= v ? > v

Make first and last partitions empty:

 h= -1; t= b.length;

When does it end (when does invariant look like postcondition)?

26

inv: b
0 h t b.length
 <= v ? > v

h= -1; t= b.length;
while () {

}

post: b
0 h b.length
 <= v > v

Stop when ? section
is empty. That is when
h = t-1.
Therefore, continue as
long as h != t-1.

h != t-1

How does body make progress toward termination (cut ? in half)
and keep invariant true?

27

inv: b
0 h t b.length
 <= v ? > v

h= -1; t= b.length;
while (h != t-1) {

}

Let e be index of middle
value of ? Section.
Maybe we can set h or t to
e, cutting ? section in half

b
0 h e t b.length
 <= v ? > v

int e= (h+t)/2;

How does body make progress toward termination (cut ? in half)
and keep invariant true?

28

inv: b
0 h t b.length
 <= v ? > v

h= -1; t= b.length;
while (h != t-1) {
 int e= (h+t)/2;

}

b
0 h e t b.length
 <= v ? ? > v

if (b[e] <= v) h= e;

If b[e] <= v, then so is every value
to its left, since the array is sorted.
Therefore, h= e; keeps the invariant
true.

b
0 h e t b.length
 <= v <= v ? > v

How does body make progress toward termination (cut ? in half)
and keep invariant true?

29

inv: b
0 h t b.length
 <= v ? > v

h= -1; t= b.length;
while (h != t-1) {
 int e= (h+t)/2;
 if (b[e] <= v) h= e;

}

b
0 h e t b.length
 <= v ? ? > v

else t= e;

If b[e] > v, then so is every value to
its right, since the array is sorted.
Therefore, t= e; keeps the invariant
true.

b
0 h e t b.length
 <= v ? > v > v

Develop binary search in sorted array b for v

30

 ? pre: b
0 b.length

post: b
0 h b.length
 <= v > v

Store a value in h to make this true:

DON’T TRY TO MEMORIZE CODE!
Instead, learn to derive the loop invariant from the pre-
and post-condition and then to develop the loop using the
pre- and post-condition and the loop invariant.
PRACTICE THIS ON KNOWN ALGORITHMS!

Processing arrays from beg to end (or end to beg)

31

Many loops process elements of an array b (or a String, or any
list) in order: b[0], b[1], b[2], …
If the postcondition is
 R: b[0..b.length-1] has been processed
Then in the beginning, nothing has been processed, i.e.
 b[0..-1] has been processed
After k iterations, k elements have been processed:
 P: b[0..k-1] has been processed

invariant P: b processed not processed

0 k b.length

Processing arrays from beg to end (or end to beg)

32

 Task: Process b[0..b.length-1]

 {R: b[0..b.length-1] has been processed}

Replace b.length in postcondition
by fresh variable k to get invariant
 b[0..k-1] has been processed

inv P: b processed not processed

0 k b.length

or draw it as a picture

k= 0;
{inv P}
while () {

}

k != b.length

k= k + 1; // progress toward termination
Process b[k]; // maintain invariant

Processing arrays from beg to end (or end to beg)

33

 Task: Process b[0..b.length-1]

 {R: b[0..b.length-1] has been processed}

inv P: b processed not processed

0 k b.length

k= 0;
{inv P}
while () {

}

k != b.length

k= k + 1; // progress toward termination
Process b[k]; // maintain invariant

Most loops that process the
elements of an array in order
will have this loop invariant

and will look like this.

Count the number of zeros in b.
Start with last program and refine it for this task

34

 Task: Set s to the number of 0’s in b[0..b.length-1]

 {R: s = number of 0’s in b[0..b.length-1]}

inv P: b s = # 0’s here not processed

0 k b.length

k= 0;
{inv P}
while () {

}

k != b.length

k= k + 1; // progress toward termination
Process b[k]; // maintain invariant

s= 0;

if (b[k] == 0) s= s + 1;

Be careful. Invariant may require processing
elements in reverse order!

35

inv P: b processed not processed

0 k b.length
This invariant forces processing from beginning to end

inv P: b not processed processed

0 k b.length
This invariant forces processing from end to beginning

Process elements from end to beginning
36

inv P: b not processed processed

0 k b.length

{R: b[0..b.length-1] is processed}

k= b.length–1; // how does it start?

while (k >= 0) { // how does it end?

}

k= k – 1; // how does it make progress?

Process b[k]; // how does it maintain invariant?

Process elements from end to beginning
37

inv P: b not processed processed

0 k b.length

{R: b[0..b.length-1] is processed}

k= b.length–1;

while (k >= 0) {

} k= k – 1;

Process b[k];

Heads up! It is important that you can look
at an invariant and decide whether elements
are processed from beginning to end or end
to beginning!

For some reason, some students have
difficulty with this. A question like this
could be on the prelim!

