CORRECTNESS ISSUES AND LOOP INVARIANTS

Lecture 8
CS2110 - Spring 2015

The next several lectures

Study algorithms for searching and sorting arrays. Investigate their complexity -how much time and space they take "Formalize" the notions of average-case and worst-case complexity

We want you to know these algorithms

- Not by memorizing code but by
- Being able to develop the algorithms from their specifications and, when necessary, a small idea

We give you some guidelines and instructions on how to develop an algorithm from its specification.
Deal mainly with developing loops.

Many (most) of you could use instruction on developing algorithms, keeping things simple

String[] dummy = s.split(""); // turns s into string array
int len $=$ s.length()-1; // length of string s
String $\mathrm{a}=\times " ;$;// will be reverse of s
for (int $b=\operatorname{len} ; b>-1 ; b--)\{$
$a=$ a.dummy[b];
\}
if (s.equals(a)) return true; else retarn false;
return s.equals(b)

This submitted code for body of isPalindrome didn't work because split wasn't used properly and it wasn't debugged

Why calculate the reverse of s ?

Some principles and strategies for development

- Don't introduce a variable without a good reason.
- Put local variables as close to their first use as possible.
- Structure expressions to make them readable.
- Make the structure of the program reflect the structure of the data.
- Never have lots of syntax errors.
- Intersperse coding and testing: code a little, test a little.
- Write the class invariant while putting in field declarations.
- Write a method spec before writing the method body.
- Use assert statements to check method preconditions -as along as it doesn't complicate program too much and doesn't change the time-complexity of the method.

Show development of isPalindrome

/** Return true iff s is a palindrome */ public static boolean isPalindrome(String s)

Our instructions said to visit each char of s only once!

isPalindrome: Set ispal to "s is a palindrome"

 (forget about returns for now. Store value in ispal.Think of checking equality of outer chars, then chars inside them, then chars inside them, etc.

Key idea:
Generalize this to a picture that is true before/after each iteration
isPalindrome: Set ispal to "s is a palindrome" (forget about returns for now. Store value in ispal.

Generalize to a picture that is true before/after each iteration

isPalindrome: Set ispal to "s is a palindrome"

int $\mathrm{h}=0$;
Initialization to make picture true int $\mathrm{k}=$ s.length ()-1;
// $\mathrm{s}[0 . . \mathrm{h}-1]$ is the reverse of $\mathrm{s}[\mathrm{k}+1 .$.
Stop when result is known Continue when it's not while ($\mathrm{h}<\mathrm{k}$ \&\& $\mathrm{s} . \operatorname{charAt}(\mathrm{h})==\operatorname{s.charAt}(\mathrm{k}))$ \{

$$
\mathrm{h}=\mathrm{h}+1 ; \mathrm{k}=\mathrm{k}-1 ;
$$

Make progress toward termination AND keep picture true
ispal $=\mathrm{h}>=\mathrm{k}$;

s.length()

isPalindrome

/** Return true iff s is a palindrome */
public static boolean isPal(String s) \{
int $\mathrm{h}=0$; int $\mathrm{k}=$ s.length ()-1;
// invariant: $\mathrm{s}[0 . . \mathrm{h}-1]$ is reverse of $\mathrm{s}[\mathrm{k}+1 ..] \longleftarrow$ invariant because
while $(\mathrm{h}<\mathrm{k})$ \{
if (s.charAt(h) != s.charAt(k))
return false;

Loop invariant invariant because it's true before/ after each loop iteration

$$
\mathrm{h}=\mathrm{h}+1 ; \mathrm{k}=\mathrm{k}-1 ;
$$

\}
return true;
\}

s.length()

Engineering principle

Break a project up into parts, making them as independent as possible. When the parts are constructed, put them together.

Each part can be understood by itself, without mentioning the others.

Reason for introducing loop invariants

```
Given c >= 0, store b^c in x
z=1;x=b;y=c;
while (y !=0) {
    if (y is even) {
        x= x*x; y= y/2;
    } else {
        z= z*x;y=y-1;
    }
}
{z=b^c} looking at any other code.
    Need to understand condition y != 0
    without looking at loop body
    Etc.
```


Invariant: is true before and after each iteration

initialization; // invariant P while (B) $\{\mathrm{S}\}$

Upon termination, we know P true, B false
"invariant" means unchanging. Loop invariant: an assertion -a true-false statement - that is true before and after each iteration of the loop - every time B is to be evaluated.
Help us understand each part of loop without looking at all other parts.

Simple example to illustrate methodology

```
Store sum of 0..n in s
Precondition: n >= 0
// {n>= 0}
k=1; s=0;
// inv: s = sum of 0..k-1 &&
// 0<= k<= n+1
while (k<= n) {
    s= s + k;
    k= k + 1;
}
{s= sum of 0..n}
```

First loopy question.
Does it start right?
Does initialization make invariant true?

Yes!
$\mathrm{s}=$ sum of $0 . . \mathrm{k}-1$
$=$ <substitute initialization>
$0=$ sum of 0..1-1
$=<$ arithmetic $>$
$0=$ sum of $0 . .0$
We understand initialization
without looking at any other code

Simple example to illustrate methodology

```
Store sum of 0..n in s
Precondition: n >= 0
// {n>=0}
k=1; s=0;
// inv: s = sum of 0..k-1 &&
// 0<= k<= n+1
while (k<= n) {
    s= s + k;
    k= k + 1;
}
{s = sum of 0..n}
```

We understand that postcondition is true without looking at init or repetend

Simple example to illustrate methodology

```
Store sum of 0..n in s
Precondition: n >= 0
// {n>=0}
k=1;s=0;
// inv: s = sum of 0..k-1 &&
// 0<= k<=n+1
while (k<= n) {
    s= s + k;
    k= k + 1;
}
```

$\{\mathrm{s}=$ sum of $0 . . \mathrm{n}\} \quad$ We understand that there is no infinite
looping without looking at init and
focusing on ONE part of the repetend.

Simple example to illustrate methodology

```
Store sum of 0..n in s
Precondition: n >= 0
// {n>=0}
k= 1; s= 0;
// inv: s = sum of 0..k-1 &&
// 0<= k<= n+1
while (k<= n) {
    s= s + k;
    k= k + 1;
}
{s= sum of 0..n}
```

Fourth loopy question.
Invariant maintained by each iteration?

Is this property true?
$\{$ inv \&\& $\mathrm{k}<=\mathrm{n}\}$ repetend $\{\mathrm{inv}\}$
Yes!

$$
\begin{aligned}
& \{\mathrm{s}=\text { sum of } 0 . . \mathrm{k}-1\} \\
& \mathrm{s}=\mathrm{s}+\mathrm{k} ; \\
& \{\mathrm{s}=\text { sum of } 0 . . \mathrm{k}\} \\
& \mathrm{k}=\mathrm{k}+1 ; \\
& \{\mathrm{s}=\text { sum of } 0 . . \mathrm{k}-1\}
\end{aligned}
$$

4 loopy questions to ensure loop correctness

```
{precondition Q}
init;
// invariant P
while (B) {
    S
}
{R}
```

Four loopy questions: if answered yes, algorithm is correct.

First loopy question; Does it start right?
Is $\{\mathrm{Q}\}$ init $\{\mathrm{P}\}$ true?
Second loopy question:
Does it stop right?
Does P \&\&! B imply R?
Third loopy question:
Does repetend make progress?
Will B eventually become false?
Fourth loopy question:
Does repetend keep invariant true?
Is $\{P \& \&!B\} S\{P\}$ true?

Note on ranges m..n

Range m.. n contains $n+1-m$ ints: $m, m+1, \ldots, n$ (Think about this as "Follower ($\mathrm{n}+1$) minus First (m)")
$2 . .4$ contains $2,3,4$: that is $4+1-2=3$ values
$2 . .3$ contains 2, 3 : that is $3+1-2=2$ values
2.. 2 contains $2: \quad$ that is $2+1-2=1$ value
2..1 contains: that is $1+1-2=0$ values

Convention: notation m..n implies that $\mathrm{m}<=\mathrm{n}+1$
Assume convention even if it is not mentioned!
If m is 1 larger than n, the range has 0 values

	m		n	
array segment $b[\mathrm{~m} . \mathrm{n}]:$	b			

Can't understand this example without invariant!

Given $\mathrm{c}>=0$, store $\mathrm{b}^{\wedge} \mathrm{c}$ in z
$\mathrm{z}=1 ; \mathrm{x}=\mathrm{b} ; \mathrm{y}=\mathrm{c} ;$
// invariant $\mathrm{y}>=0 \quad \& \&$
// $\quad z^{*} x^{\wedge} y=b^{\wedge} c$
while $(\mathrm{y}!=0)\{$
if (y is even) $\{$
$x=x * x ; y=y / 2 ;$
\} else \{
$\mathrm{z}=\mathrm{z} * \mathrm{x} ; \mathrm{y}=\mathrm{y}-1 ;$
\}
\}
$\left\{\mathrm{z}=\mathrm{b}^{\wedge} \mathrm{c}\right\}$
We understand initialization
without looking at any other code

For loopy questions to reason about invariant

```
Given c > = 0, store b}\mp@subsup{\textrm{b}}{}{\wedge}\textrm{c}\mathrm{ in }\textrm{x
z= 1; x= b; y= c;
// invariant y >=0 AND
// z**^y = b^c
while (y != 0) {
        if (y is even) {
        x= x*x; y= y/2;
    } else {
        z= z*x; y= y - 1;
    }
}
{z= b^c}
We understand loop condition without looking at any other code
```


For loopy questions to reason about invariant

```
Given c > = 0, store b}\mp@subsup{\textrm{b}}{}{\wedge}\textrm{c}\mathrm{ in }\textrm{x
z=1; x=b; y= c;
// invariant y >=0 AND
// z**^y = b^c
while (y != 0) {
        if (y is even) {
        x= x*x; y= y/2;
    } else {
        z= z*x; y= y-1
```

 \}
 \}
$\left\{\mathrm{z}=\mathrm{b}^{\wedge} \mathrm{c}\right\}$

> Third loopy question.
> Does repetend make progress toward termination?

Yes! We know that $\mathrm{y}>0$ when loop body is executed. The loop body decreases y.

We understand progress without
looking at initialization
$\left\{\mathrm{z}=\mathrm{b}^{\wedge} \mathrm{c}\right\}$

For loopy questions to reason about invariant

Given $\mathrm{c}>=0$, store $\mathrm{b}^{\wedge} \mathrm{c}$ in x
$\mathrm{z}=1 ; \mathrm{x}=\mathrm{b} ; \mathrm{y}=\mathrm{c}$;
$/ /$ invariant $\mathrm{y}>=0$ AND
// $\quad z^{*} x^{\wedge} y=b^{\wedge} c$
while (y !=0) \{
if (y is even) \{
$x=x^{*} x ; y=y / 2$;
\} else \{

$$
\mathrm{z}=\mathrm{z} * \mathrm{x} ; \mathrm{y}=\mathrm{y}-1 ;
$$

$$
\}
$$

\}
$\left\{\mathrm{z}=\mathrm{b}^{\wedge} \mathrm{c}\right\}$
We understand invariance without looking at initialization

Develop binary search for v in sorted array b

Example:

Example.	0				4	5	6	7	7			b.length	
pre: b	2	2	4	4	4	4	7)	9	9		
If v is 4,5 , or $6, \mathrm{~h}$ is 5													

If v in b, h is index of rightmost occurrence of v. If v not in b, h is index before where it belongs.

Develop binary search in sorted array b for v

Store a value in h to make this true:

Get loop invariant by combining pre- and postconditions, adding variable t to mark the other boundary
inv:

How does it start (what makes the invariant true)?

Make first and last partitions empty:

$$
\mathrm{h}=-1 ; \mathrm{t}=\mathrm{b} \text {.length; }
$$

When does it end (when does invariant look like postcondition)?

$$
\begin{aligned}
& \mathrm{h}=-1 ; \mathrm{t}=\mathrm{b} \text {.length; } \\
& \text { while }(\mathrm{h}!=\mathrm{t}-1) \text { \{ }
\end{aligned}
$$

Stop when ? section is empty. That is when $\mathrm{h}=\mathrm{t}-1$.
Therefore, continue as
long as $\mathrm{h}!=\mathrm{t}-1$.

How does body make progress toward termination (cut ? in half) and keep invariant true?

How does body make progress toward termination (cut ? in half) and keep invariant true?

$\mathrm{h}=-1$; $\mathrm{t}=\mathrm{b}$.length; while (h ! $=\mathrm{t}-1$) \{
int $\mathrm{e}=(\mathrm{h}+\mathrm{t}) / 2$;
if $(b[e]<=v) h=e$;

If $\mathrm{b}[\mathrm{e}]<=\mathrm{v}$, then so is every value to its left, since the array is sorted. Therefore, $\mathrm{h}=\mathrm{e}$; keeps the invariant true.

How does body make progress toward termination (cut ? in half) and keep invariant true?

Develop binary search in sorted array b for v

Store a value in h to make this true:

DON'T TRY TO MEMORIZE CODE!

Instead, learn to derive the loop invariant from the preand post-condition and then to develop the loop using the pre- and post-condition and the loop invariant. PRACTICE THIS ON KNOWN ALGORITHMS!

Processing arrays from beg to end (or end to beg)

Many loops process elements of an array b (or a String, or any list) in order: $\mathrm{b}[0], \mathrm{b}[1], \mathrm{b}[2], \ldots$
If the postcondition is
R : $\mathrm{b}[0 . . \mathrm{b}$.length -1$]$ has been processed
Then in the beginning, nothing has been processed, i.e.
$\mathrm{b}[0 . .-1]$ has been processed
After k iterations, k elements have been processed:
P : $\mathrm{b}[0 . . \mathrm{k}-1]$ has been processed

invariant P :
b

Processing arrays from beg to end (or end to beg)

```
Task: Process b[0..b.length-1]
k= 0;
{inv P} by fresh variable k to get invariant
\(\mathrm{b}[0 . . \mathrm{k}-1]\) has been processed
```

```
while ( k != b.length ) {
```

```
while ( k != b.length ) {
```

```
or draw it as a picture
    Process b[k]; // maintain invariant
    k= k+1; // progress toward termination
}
\(\{\mathrm{R}: \mathrm{b}[0 . . \mathrm{b} . l \mathrm{length}-1]\) has been processed \(\}\)
```

Replace b.length in postcondition

b.length
inv P: b processed \quad not processed

Processing arrays from beg to end (or end to beg)

```
Task: Process b[0..b.length-1]
k= 0;
{inv P}
while ( k != b.length ) {
```

Most loops that process the elements of an array in order will have this loop invariant and will look like this.

Process $\mathrm{b}[\mathrm{k}]$; // maintain invariant
$\mathrm{k}=\mathrm{k}+1$; // progress toward termination
$\{\mathrm{R}: \mathrm{b}[0 . . \mathrm{b}$. length-1] has been processed $\}$

0		
inv P: b	processed	not processed

Count the number of zeros in b.

Start with last program and refine it for this task

Task: Set s to the number of 0's in b[0..b.length-1]
$\mathrm{k}=0 ; \mathrm{s}=0$;
\{inv P\}
while (k ! = b.length) \{

$$
\text { if }(\mathrm{b}[\mathrm{k}]==0) \mathrm{s}=\mathrm{s}+1 \text {; }
$$

$\mathrm{k}=\mathrm{k}+1$; // progress toward termination \}
$\{\mathrm{R}: \mathrm{s}=$ number of 0 's in $\mathrm{b}[0 .$. b.length- 1$]\}$

Be careful. Invariant may require processing elements in reverse order!

This invariant forces processing from beginning to end

This invariant forces processing from end to beginning

inv P: \mathbf{b} not processed processed

Process elements from end to beginning

```
k= b.length-1; // how does it start?
while (k >= 0) { // how does it end?
        Process b[k];
    k= k - 1; // how does it make progress?
}
{R: b[0..b.length-1] is processed}
\begin{tabular}{c|c|c|} 
& \multicolumn{2}{c}{0} \\
\multicolumn{2}{c}{k} \\
inv P: & b & not processed \\
\cline { 2 - 3 } & processed \\
\hline
\end{tabular}
```


Process elements from end to beginning

Heads up! It is important that you can look
$\mathrm{k}=$ b.length -1 ;
while $(\mathrm{k}>=0)$ \{
Process $\mathrm{b}[\mathrm{k}]$; For some reason, some students have difficulty with this. A question like this could be on the prelim!
$\{R$: b[0..b.length-1] is processed $\}$

	0	
	k	
inv P:	b	not processed
	processed	

b.length
inv $\mathrm{P}: ~ \mathrm{~b}$ not processed processed

