
public class LinkedList $<\mathrm{E}>\{\ldots\} \quad / / \mathrm{E}$ is a type parameter
/** Values in d1 can be ANY objects —String, JFrame, etc. */ LinkedList d1 = new LinkedList();

String $\mathrm{x}=(($ String $) \mathrm{d} 1$. getFirst()).getValueOf(); // cast is needed

```
/** The values in d2 are only objects of class String */
LinkedList<String>d2= new LinkedList<String>();
String s= d2.getFirst().getValueOf(); // no cast is needed
```


/** The values in d 2 are only objects of class String */
LinkedList $<$ String $>\mathrm{d} 2=$ new LinkedList $<$ String $>$ ();
\ldots
String s= d2.getFirst().getValueOf(); // no cast is needed

Overview references to sections in text

- Note: We've covered everything in JavaSummary.pptx!
\square What is recursion? 7.1-7.39 slide 1-7
\square Base case 7.1-7.10 slide 13
\square How Java stack frames work 7.8-7.10 slide 28-32

NEXT WEEK IS FEBRUARY BREAK

1. No lecture on Tuesday.
2. No CS2111 on Tuesday.
. No recitation/discussion sections on Tuesday/Wednesday
See you in lecture next Thursday

What does generic mean?

From Merriam-Webster online:
ge \cdot ner \cdot ic adjective
a : relating or applied to or descriptive of all members of a genus, species, class, or group : common to or characteristic of a whole group or class : typifying or subsuming : not specific or individual
generic applies to that which characterizes every individual in a category or group and may suggest further that what is
designated may be thought of as a clear and certain classificatory criterion

Example: Sum the digits in a non-negative integer

```
public static int sum(int n) {
    if (n<10) return n;
    return sum(n/10) + n%10;
}
public static void main(
        String[] args) {
    int r= sum(824);
    System.out.println(r);
}
```

Frame for method in the system that calls method main

Stack Frame
A "frame" contains information about a method call: At runtime, Java maintains a a frame stack that contains frames for all method calls that are being executed but have not completed.
Method call: push a frame for call on stack, assign argument values to parameters, execute method body. Use the frame for the call to reference local variables, parameters. parameters End of method call: pop its frame from the stack; if it is a function, leave the return value on top of stack.

Example: Sum the digits in a non-negative integer
public static int sum(int $n)\{$ if $(\mathrm{n}<10)$ return n ; return $\operatorname{sum}(\mathrm{n} / 10)+\mathrm{n} \% 10)$; \}
public static void main(...) \{ int $\mathrm{r}=\operatorname{sum}(824)$; System.out.println(r);
\}
Frame for method in the system that calls method main: main is then called

main	$\mathrm{r} _$args return info
system	$?$
return info	

Example: Sum the digits in a non-negative integer

Example: Sum the digits in a non-negative integer

```
public static int sum(int n) {
    if (n<10) return n;
    return sum(n/10) + n%10;
}
public static void main(...) {
    intr= sum(824);
    System.out.println(r);
}
```

Using return value 14 , main stores 14 in r and removes 14 from stack
main

r 14
return info
args
?
return info

Summary of method call execution

Memorize this!
\square 1. A frame for a call contains parameters, local variables, and other information needed to properly execute a method call.

- 2. To execute a method call: push a frame for the call on the stack, assign arg values to pars, and execute method body.

When executing method body, look in frame for call for parameters and local variables.
When method body finishes, pop frame from stack and (for a function) push the return value on the stack.

- For function call: When control given back to call, it pops the return value and uses it as the value of the function call.

Two views of recursive methods

\square How are calls on recursive methods executed? We saw that. Use this only to gain understanding / assurance that recursion works
How do we understand a recursive method know that it satisfies its specification? How do we write a recursive method? This requires a totally different approach. Thinking about how the method gets executed will confuse you completely! We now introduce this approach.

Understanding a recursive method

Step 1. Have a precise spec!
Step 2. Check that the method works in the base case(s).

Step 3. Look at the recursive case(s). In your mind, replace each recursive call by what it
$/ * *=$ sum of digits of n.
\quad * Precondition: $\mathrm{n}>=0$ */
public static int sum $(\mathrm{int} \mathrm{n})\{$
\quad if $(\mathrm{n}<10)$ return $\mathrm{n} ;$

$\quad / / \mathrm{n}$ has at least two digits
return $\operatorname{sum}(\mathrm{n} / 10)+\mathrm{n} \% 10 ;$
does according to the method spec and verify that the correct result is then obtained.

$$
\begin{aligned}
& \text { return } \operatorname{sum}(n / 10)+n \% 10 ; \\
& \text { return (sum of digits of } n / 10)+n \% 10 ; \quad / / \text { e.g. } n=843
\end{aligned}
$$

Understanding a recursive method

Step 1. Have a precise spec!

Step 2. Check that the method works in the base case(s): Cases where the parameter is small enough that the result can be computed simply and without recursive calls.

If $\mathrm{n}<10$, then n consists of a single digit. Looking at the spec, we see that that digit is the required sum.

Understanding a recursive method

Step 1. Have a precise spec! Important! Can't do step 3 without it
Step 2. Check that the method works in the base case(s).

Step 3. Look at the recursive case(s). In your mind, replace each recursive call by what it does according to the spec and verify correctness.

Once you get the hang of it , this is what makes recursion easy! This way of thinking is based on math induction, which we will see later in the course.

Step 4. (No infinite recursion) Make sure that the args of recursive calls are in some sense smaller than the pars of the method

Writing a recursive method

Step 1. Have a precise spec!
Step 2. Write the base case(s): Cases in which no recursive calls are needed Generally, for "small" values of the parameters.

Step 3. Look at all other cases. See how to define these cases in terms of smaller problems of the same kind. Then implement those definitions, using recursive calls for those smaller problems of the same kind. Done suitably, point 4 is automatically satisfied.

Step 4. (No infinite recursion) Make sure that the args of recursive calls are in some sense smaller than the pars of the method

Examples of writing recursive functions

For the rest of the class, we demo writing recursive functions using the approach outlined below. The java file we develop will be placed on the course webpage some time after the lecture.

Step 1. Have a precise spec!
Step 2. Write the base case(s).
Step 3. Look at all other cases. See how to define these cases in terms of smaller problems of the same kind. Then implement those definitions, using recursive calls for those smaller problems of the same kind.

Writing a recursive method
Step 1. Have a precise spec!
Step 2. Write the base case(s): Cases in which no recursive calls
are needed Generally, for "small" values of the parameters.
Step 3. Look at all other cases. See how to define these cases
in terms of smaller problems of the same kind. Then
implement those definitions, using recursive calls for those
smaller problems of the same kind. Done suitably, point 4 is
automatically satisfied.
Step 4. (No infinite recursion) Make sure that the args of recursive
calls are in some sense smaller than the pars of the method

The Fibonacci Function		
28		
	Mathematical definition: $\begin{aligned} & \mathrm{fib}(0)=0 \\ & \mathrm{fib}(1)=1 \\ & \mathrm{fib}(\mathrm{n})=\mathrm{fib}(\mathrm{n}-1)+\mathrm{fib}(\mathrm{n}-2), \mathrm{n} \geq 2 \end{aligned}$	
Fibonacci sequence: $0,1,1,2,3,5,8,13$,		
	$/ * *=\text { fibonacci(n). Pre: } \mathrm{n}>=0 * /$	Fibonacci (Leonardo Pisano) 1170-1240?
	$\begin{aligned} & \text { if }(\mathrm{n}<=1) \text { return } \mathrm{n} \\ & \text { // }\{1<\mathrm{n}\} \\ & \text { return fib }(\mathrm{n}-2)+\text { fib }(\mathrm{n}-1) \end{aligned}$	Statue in Pisa, Italy Giovanni Paganucci 1863

Example: Count the e's in a string

```
/** = number of times c occurs in s */
public static int countEm(char c, String s) {
\begin{tabular}{ll} 
if \((s . l e n g t h()==0)\) return \(0 ;\) & substring s \([1 . . \mid\), \\
\(/ /\{\) s has at least 1 character \(\}\) & i.e. \(s[1], \ldots\), \\
if \((\) s.charAt \((0)!=c)\) & s(s.length ()\(-1)\)
\end{tabular}
        if (s.charAt(0) != c)
            return countEm(c, s.substring(1));
        // { first character of s is c}
        return 1 + countEm (c, s.substring(1));
}
        ~ countEm('e', "it is easy to see that this has many e's") = 4
    \square countEm('e', "Mississippi") = 0
```

public static boolean isPal(String s) \{
if $($ s.length ()$<=1)$
return true;
Substring from
// \{ s has at least 2 chars \}
int $\mathrm{n}=\mathrm{s}$. length ()-1;
$\mathrm{s}[1]$ to $\mathrm{s}[\mathrm{n}-1]$
return s.charAt(0) == s.charAt(n) \&\& isPal(s.substring $(1, n))$;
\}
isPal("racecar") returns true
isPal("pumpkin") returns false

Computing a^{n} for $\mathrm{n}>=0$	
31	
Power computation:$\begin{aligned} & a^{0}=1 \\ & \text { If } n!=0, a^{n}=a * a^{n-1} \\ & \text { If } n!=0 \text { and even, } a^{n}=\left(a^{*} a\right)^{n / 2} \end{aligned}$	
	Java note: For ints x and $y, x / y$ is the integer part of the quotient Judicious use of the third property gives a logarithmic algorithm, as we will see
	Example: $3^{8}=(3 * 3) *(3 * 3) *(3 * 3) *(3 * 3)=(3 * 3)^{4}$

Conclusion

Recursion is a convenient and powerful way to define functions

Problems that seem insurmountable can often be solved in a "divide-and-conquer" fashion:
\square Reduce a big problem to smaller problems of the same kind, solve the smaller problems

- Recombine the solutions to smaller problems to form solution for big problem

