
2/10/15	

1	

CS/ENGRD 2110
SPRING 2015
Lecture 6: Consequence of type, casting; function equals
http://courses.cs.cornell.edu/cs2110

1

Announcements
2

¨  A1 feedback available. 30 still to be graded. Hopefully today. If
yours is not graded yet, we appreciate your patience.
Average 93.1 Median 95

¨  You can ask for a regrade of A1 on the CMS. State what you think
we graded unfairly or incorrectly.

¨  Your file A2.java must be in the default package. Do NOT put a
package statement at the top of it.

¨  A3 now available on CMS and Piazza. Refer often to the Piazza
FAQ Note for A3

¨  Please read the assignment FAQ Notes on the Piazza before asking
a question. It might already be answered.

¨  Read Note @282 on study habits! Take its message to heart.

Assignment A3: Doubly linked Lists

3

Idea: maintain a list (2, 5, 7) like this:

3

h a1 2
a1

a6

v

next

5
a6

a8

v

next

7
a8

null

v

next

This is a singly liked list

To save space we write names like a6 instead of N@35abcd00

4

4

h a1 2
a1

a6

v

next

5
a6

a8

v

next

7
a8

null

v

next

Easy to insert a node in the beginning!

(2, 5, 7)

h a3 2
a1

a6

v

next

5
a6

a8

v

next

7
a8

null

v

next

8
a3

a1

v

next (8, 2, 5, 7)

5

5

h a1 2
a1

a6

v

next

5
a6

a2

v

next

7
a8

null

v

next

Easy to remove a node if you have its predecessor!

(2, 5, 8, 7)

8
a2

a8

v

next

k a6

h a1 2
a1

a6

v

next

5
a6

a8

v

next

7
a8

null

v

next

8
a2

a8

v

next

k a6 (2, 5, 7)

Assignment A3: Use an inner class
6

public class LinkedList {
 private int x;

 public void m(int y) { … }

}

private class CI {

}

Inside-out rule: Objects of CI can reference
components of the object of C in which they live.

In addition: methods of C can reference private
components of CI

2/10/15	

2	

Assignment A3: Generics
7

public class LinkedList {

}

Values of linked list are
probably of class Object

public class LinkedList<E> {

}

You can specify what
type of values

new LinkedList<Integer>(…)
new LinkedList<String>(…)
new LinkedList<JFrame>(…)

Overview ref in text and JavaSummary.pptx
8

¨  Quick look at arrays slide 50-55
¨  Casting among classes C.33-C.36 (not good) slide 34-41

¨  Consequences of the class type slide 34-41

¨  Operator instanceof slide 40

¨  Function equals slide 37-41

Homework. Learn about while/ for loops in Java. Look in text.

while (<bool expr>) { … } // syntax

for (int k= 0; k < 200; k= k+1) { … } // example

Classes we work with today
9

Work with a class Animal and subclasses
like Cat and Dog
Put components common to animals in Animal
Object partition is there but not shown

a0
Animal

CatCat(String, int)���
getNoise() toString()���
getWeight()

age���
Animal(String, int)���
isOlder(Animal)

5
a1

Animal

DogDog(String, int)���
getNoise() toString()

age���
Animal(String, int)���
isOlder(Animal)

6

Object

Animal

Dog Cat

class hierarchy: Animal[] v= new Animal[3];
10

declaration of
array v

v nullCreate array
of 3 elements

a6
Animal[]

0
1
2

null
null
null

Assign value of
new-exp to v

a6

Assign and refer to elements as usual:

v[0]= new Animal(…);
…
a= v[0].getAge();

null null null
 0 1 2

v
Sometimes use horizontal
picture of an array:

Which function is called by
 v[0].toString() ?
Remember, partition Object ���
contains toString()

Which function is called?
11

a0 null a1v
 0 1 2

a0
Animal

CatCat(String, int)���
getNoise() toString()���
getWeight()

age���
Animal(String, int)���
isOlder(Animal)

5
a1

Animal

DogDog(String, int)���
getNoise() toString()

age���
Animal(String, int)���
isOlder(Animal)

6
Bottom-up or
overriding rule
says function
toString in Cat
partition

The type of v is Animal[]
The type of each v[k] is Animal
The type is part of the syntax/grammar of
the language. Known at compile time.

Consequences of a class type
12

a0 null a1v
 0 1 2

Animal[] v; declaration of v. Also means that each
 variable v[k] is of type Animal

Animal variables

As we see on next slide, the type of a class variable
like v[k] determines what methods can be called

2/10/15	

3	

From an Animal variable, can use only
methods available in class Animal

13

a0
Animal

CatCat(String, int)���
getNoise() toString()���
getWeight()

age���
Animal(String, int)���
isOlder(Animal)

5

a0 c
 Cat

a0
Animal

CatCat(String, int)���
getNoise() toString()���
getWeight()

age���
Animal(String, int)���
isOlder(Animal)

5

a0 a
 Animal

The same object a0, from the
viewpoint of a Cat variable

and an Animal variable

c.getWeight() is legal a.getWeight() is illegal

because
getWeight
is not
available
in class
Animal

Rule for determining legality of method call
14

a0 c
 C

a0

Object

C

m(…) must be
declared in one
of these classes

Rule: c.m(…) is legal and the program will compile
ONLY if method m is declared in C or one of its
superclasses

…

…
…

Type of v[0]: Animal

Another example
15

a0 null a1v
 0 1 2

a0
Animal

CatCat(String, int)���
getNoise() toString()���
getWeight()

age���
Animal(String, int)���
isOlder(Animal)

5
a1

Animal

DogDog(String, int)���
getNoise() toString()

age���
Animal(String, int)���
isOlder(Animal)

6

Should this call be allowed?
Should program compile?

 v[0].getWeight() Should this call be allowed?
Should program compile?

 v[k].getWeight()

Each element v[k] is of
type Animal.
From v[k], see only what is in
partition Animal and
partitions above it.

View of object based on the type
16

a0 null a1v
 0 1 2

a0
Animal

CatCat(String, int)���
getNoise() toString()���
getWeight()

age���
Animal(String, int)���
isOlder(Animal)

5
a1

Animal

DogDog(String, int)���
getNoise() toString()

age���
Animal(String, int)���
isOlder(Animal)

6

getWeight() not in class Animal or
Object. Calls are illegal, program
does not compile:

 v[0].getWeight() v[k].getWeight()

Components
are in lower
partitions, but
can’t see them

Animal

Casting up class hierarchy
17

a0
Animal

CatCat(String, int)���
getNoise() toString()���
getWeight()

age���
Animal(String, int)���
isOlder(Animal)

5

a1
Animal

DogDog(String, int)���
getNoise() toString()

age���
Animal(String, int)���
isOlder(Animal)

6

You know about casts like

 (int) (5.0 / 7.5)

 (double) 6

 double d= 5; // automatic cast

Object

Animal

Dog Cat

Discuss casts up/down class hierarchy.

 Animal h= new Cat(“N”, 5);

 Cat c= (Cat) h;

A class cast doesn’t change the object. It
just changes the perpective –how it is
viewed!

age���
Animal(String, int)���
isOlder(Animal)

Explicit casts: unary prefix operators
18

a0

Animal

CatCat(String, int)���
getNoise() toString()���
getWeight()

5

c a0
Cat

Object
equals() …

Rule: an object can be cast to the name
of any partition that occurs within it —
and to nothing else.
a0 maybe cast to Object, Animal, Cat.
An attempt to cast it to anything else
causes an exception

(Cat) c
(Object) c
(Animal) (Animal) (Cat) (Object) c

These casts don’t take any time. The object
does not change. It’s a change of perception

2/10/15	

4	

Implicit upward cast
19

a0
Animal

CatCat(String, int)���
getNoise() toString()���
getWeight()

age���
Animal(String, int)���
isOlder(Animal)

5

a1
Animal

DogDog(String, int)���
getNoise() toString()

age���
Animal(String, int)���
isOlder(Animal)

6

public class Animal {
 /** = "this Animal is older than h" */
 public boolean isOlder(Animal h) {
 return age > h.age;
 }

Call c.isOlder(d)

h is created. a1 is cast up to class
Animal and stored in h

d a1
Dog

c a0
Cat

h a1
Animal

Upward casts done
automatically when needed

Example
20

a1
Animal

DogDog(String, int)���
getNoise() toString()

age���
Animal(String, int)���
isOlder(Animal)

6public class Animal {
 /** = "this is older than h" */
 public boolean isOlder(Animal h) {
 return age > h.age;
 }

h a1
Animal

Type of h is Animal. Syntactic
property.
Determines at compile-time
what components can be used:
those available in Animal

If a method call is legal,
the overriding rule
determines which method
is called

Components used from h
21

a1
Animal

DogDog(String, int)���
getNoise() toString()

age���
Animal(String, int)���
isOlder(Animal)

6public class Animal {
 /** = "this is older than h" */
 public boolean isOlder(Animal h) {
 return age > h.age;
 }

h a1
Animal

h.toString() OK —it’s in class Object partition

h.isOlder(…) OK —it’s in Animal partition

h.getWeight() ILLEGAL —not in Animal
 partition or Object partition

By overriding
rule, calls

toString() in
Cat partition

Explicit downward cast
22

h a0
Animal

public class Animal {
 // If Animal is a Cat, return its weight;
 otherwise, return 0.
 public int checkWeight(Animal h) {
 if (!)
 return 0;
 // { h is a Cat }
 Cat c= (Cat) h ; // downward cast
 return c.getWeight();
}

a0
Animal

CatCat(String, int)���
getNoise() toString()���
getWeight()

age���
Animal(String, int)���
isOlder(Animal)

5

(Dog) h leads to runtime error.

Don’t try to cast an object to
something that it is not!

Operator instanceof, explicit downward cast
23

h a0
Animal

public class Animal {
 // If Animal is a cat, return its weight;
 otherwise, return 0.
 public int checkWeight(Animal h) {
 if (! (h instanceof Cat))
 return 0;
 // { h is a Cat }
 Cat c= (Cat) h ; // downward cast
 return c.getWeight();
}

a0
Animal

CatCat(String, int)���
getNoise() toString()���
getWeight()

age���
Animal(String, int)���
isOlder(Animal)

5

<object> instanceof <class>

true iff object is an instance of the
class —if object has a partition for
class

Function equals
24

public class Object {
 /** Return true iff this object is
 * the same as ob */
 public boolean equals(Object b) {
 return this == b;
 }
}

x.equals(y) is same as
x == y
except when x is null! y ?

Object
x ?

Object

This gives a null-pointer
exception:
 null.equals(y)

a0
Object���

equals(Object)

2/10/15	

5	

Overriding function equals
25

Override function equals in a class to give meaning to:

“these two (possibly different) objects of the class have
the same values in some of their fields”

For those who are mathematically inclined, like any
equality function, equals should be reflexive,
symmetric, and transitive.

Reflexive: b.equals(b)
Symmetric: b.equals(c) = c.equals(b)
Transitive: if b.equals(c) and c.equals(d), then b.equals(d)

Function equals in class Animal
26

Animal

a0

name age���
Animal(String, int)���
equals()���
toString()

…

Object

equals(Object)
public class Animal {
 /** = “h is an Animal with the same
 values in its fields as this Animal” */
 public boolean equals (Object h) {

 if (!(h instanceof Animal))
 return false;
 Animal ob= (Animal) h;
 return name.equals(ob.name) &&
 age == ob.age;
}

toString()

1. Because of h is an Animal in spec,
 need the test h instanceof Animal

Function equals in class Animal
27

Animal

a0

name age���
Animal(String, int)���
equals()���
toString()

…

Object

equals(Object)
public class Animal {
 /** = “h is an Animal with the same
 values in its fields as this Animal” */
 public boolean equals (Object h) {

 if (!(h instanceof Animal))
 return false;
 Animal ob= (Animal) h;
 return name.equals(ob.name) &&
 age == ob.age;
}

toString()

2. In order to be able to reference fields in partition Animal,
 need to cast h to Animal

Function equals in class Animal
28

Animal

a0

name age���
Animal(String, int)���
equals()���
toString()

…

Object

equals(Object)
public class Animal {
 /** = “h is an Animal with the same
 values in its fields as this Animal” */
 public boolean equals (Object h) {

 if (!(h instanceof Animal))
 return false;
 Animal ob= (Animal) h;
 return name.equals(ob.name) &&
 age == ob.age;
}

toString()

3. Use String equals function to check for equality of String
values. Use == for primitive types

Why can’t the parameter type be Animal?
29

Animal

a0

name age���
Animal(String, int)���
equals()���
toString()

…

Object

equals(Object)
public class Animal {
 /** = “h is an Animal with the same
 values in its fields as this Animal” */
 public boolean equals (Animal h) {

 if (!(h instanceof Animal))
 return false;
 Animal ob= (Animal) h;
 return name.equals(ob.name) &&
 age == ob.age;
}

toString()

What is wrong with this?

