CS/ENGRD 2110
SPRING 2015

References to text and JavaSummary.pptx

Local variable: variable declared in a method body
B.10-B.11 slide 45

Inside-out rule, bottom-up /overriding rule C.15 slide 31-32
and consequences thereof slide 45

Use of this B.10 slide 23-24 and super C.15 slide 28, 33
Constructors in a subclass C.9—C.10 slide 24-29

First statement of a constructor body must be a call on another
constructor —if not Java puts in super(); C.10 slide 29

Homework

Visit course website, click on Resources and then on Code Style
Guidelines. Study

4.2 Keep methods short
4.3 Use statement-comments ...
4.4 Use returns to simplify method structure

4.6 Declare local variables close to first use ...

Local variables middle(8, 6, 7)

/** Return middle value of b, ¢, d (no ordering assumed) */
public static int middle(int b, int ¢, int d) {

if (b>c¢) { Parameter: variable
int temp= b; declared in () of
b c- ’ Local variable: method header
o=t e, o: variable

} b declared in b|8| cl|6| d|7

method bod

//f é db <:bc) § d temp ?

i <=
return b; All parameters and local variables

! are created when a call is executed,

// {b<dandb<=c} before the method body is executed.

return Math.min(c, d); They are destroyed when method
! body terminates.

Scope of local variable

/** Return middle value of b, ¢, d (no ordering assumed) */
public static int middle(int b, int ¢, int d) {

if (b>c¢) {
int temp= b;

block

b= c;

c= temp; J
}
I/ {b<=c}
if (d<=b) {

return b;

h
// {b<dandb<=c}

return Math.min(c, d);

Scope of local variable (where it
can be used): from its declaration
to the end of the block in which it
is declared.

Principle about placement of declaration

/** Return middle value of b, ¢, d (no ordering assumed) */
public static int middle(int b, int ¢, int d) {

iil'ltbt(;n;[)),{ Not good! No need for reader to
temp= b; know about temp except when
b= c; ’ reading the then-part of the if-
c= temp; statement

)

// { b<=c¢ }

if (d <=b) {
return b;

) Principle: Declare a local variable

// {b<dandb<=c} as close to its first use as possible.

return Math.min(c, d);

Assertions promote understanding

/** Return middle value of b, ¢, d (no ordering assumed) */
public static int middle(int b, int ¢, int d) {
if (b>c) {
int temp= b;
b=c;
c= temp;

) Assertion: Asserting that b <= ¢
{/ {b<=c} = at this point. Helps reader
if (d <=b) { understand code below.

return b;

)
//{b<dandb<=c}

return Math.min(c, d);

Bottom-up /overriding rule

Which method toString()
is called by

c.toString() ?

Overriding rule or
bottom-up rule:

To find out which 1s used,
start at the bottom of the
object and search upward
until a matching one is
found.

PhD @20

PhD @20

Object

toString()

PhD

name “Beaut’

toString() { ... }

Inside-out rule

Inside-out rule: Code in a construct can reference any names
declared in that construct, as well as names that appear in enclos-

ing constructs. (If name is declared twice, the closer one prevails.)

Person@a0 PersonPop
n Person / \
Person@gq1
getNA\nd\&’op() { / @Q
return n + PersonPop; n Person
; getNANPop({
return n + PersonPop;
}

Person’s objects and static components

Parameters participate in inside-out rule

Person@a(

Doesn’t work right

n

Person

Person@a(

setN(String name) {

e

n= name;

¥

Person

n

setN(String n) {

7

n=n;

J

Parameter n “blocks”
reference to field n.
(nis a “shadowed” variable)

A solution: use this

Memorize: Within an object, this evaluates to the name of the object.

In object Person@a0, In object Person@al,
this evaluates to Person@a0 this evaluates to Person@al

Person@a0 .n 1s this variable

Person@a0 / Person@al

4« | Person

n n Person

setN(String n) {

|

this.n= n;

setN(String n) {

|

this.n= n;

About super

PhD @20 Within a subclass object,
Object super refers to the partition
. above the one that contains
toString()
super.
PhD
toString() { ... } Because of the key-
word super, this
ObjectName() { calls toString in the
return super.toString(); Object partition.
h

Calling a constructor from a constructor

public class Time
private int hr; //hour of day, 0..23
private int min; // minute of hour, 0..59

/** Constructor: instance with h hours and m minutes */
public Time(int h, intm) { ...}

/** Constructor: instance with m minutes ... */
public Time(int m) {

hr =m/ 60;
min = m % 60;
! Time@fa8
Want to change body hr | o | minl 5 Time
! to call first constructor

... Time(int, int) Time (int)

Calling a constructor from a constructor

public class Time
private int hr; //hour of day, 0..23
private int min; // minute of hour, 0..59

/** Constructor: instance with h hours and m minutes ... */
public Time(int h, intm) { ...}

/** Constructor: instance with m minutes ... */
public Time(int m) { Time@fa8

this(m / 60, m % 60);
} hr | 9 min| 5 Time

Time(int, int) Ti int
Use this (Instead of Time) to call another i, i) U0 (o)

constructor in the class.
Must be first statement in constructor body!

Principle: Initialize superclass fields first

Class Employee contains info that
1s common to all employees —
name, start date, salary, etc.

getCompensation gives the salary

Executives also get a bonus.
getCompensation 1s overridden to
take this into account

Executive@aO
toString() ... ST
salary| 50,000 || EmPloyee

name, G’ | start| 1969

Employee(String, int)

toString() getCompensation()

Could have other subclasses for
part-timers, temporary workers,
consultants, etc., each with a
different getCompensation

Executive

bonus 10,000

getBonus() getCompensation()
toString()

Without OO ...

Without OO, you would write a long involved method:

public double getCompensation(...) {

if (worker is an executive)
{...} OO eliminates need for many of

. : : these long, convoluted methods,
else if (worker is part time)

[..}

else if (worker is temporary)
£ getCompensation.

which are hard to maintain.

Instead, each subclass has its own

else ... End up with many more methods,
which are usually very short

Principle: initialize superclass fields first

/** Constructor: employee with name n, year hired d, salary s */

public Employee(String n, int d, double s) {
name= n;

start= d: Executive@aO -
salary= s; toString() ... ject
)
salary| 50,000 | LEmPloyee
name | G |start| 1969

Employee(String, int, double)

bonus

10,000

Executive

Executive(String, int, double)

Principle: initialize superclass fields first

/** Constructor: employee with name n, year hired d, salary s */
public Employee(String n, int d, double s)

/** Constructor: executive with name n, year hired d, salary of

$50,000, bonus b */
public Executive(String n, int d,
double b)

Principle: In subclass constructor,
fill in the superclass fields first

How to do that if they are private?

Executive@aO
Employee
salary
name start

Employee(String, int, double)

Call constructor in superclass

bonus

Executive

Executive(String, int, double)

Principle: initialize superclass fields first

/** Constructor: employee with name n, year hired d, salary s */
public Employee(String n, int d, double s)

/** Constructor: executive with name n, year hired d, salary of
$50,000, bonus b */

public Executive(String n, int d, Executive@a0
double b) { Employee
salary
super
“Empioyee(n, d, 50000); name start
\ bonus= b; Employee(String, int, double)
To call a superclass constructor, bonus Executive

use super(...)
Executive(String, int, double)

Principle: initialize superclass fields first

/** Constructor: an instance with ...*/
public C (...) {

super();
SO;
S1;

If you don’t put one in, Java silently inserts this one:

super();

Java syntax: First statement of any
constructor you write must be a call
on another constructor

this(...); or super(...);

C@a0

Object

Object(...)

Cl

Ci(...)

(...

—

