CS/ENGRD 2110
SPRING 2015

Announcements

AO has been graded That pesky -ea flag!
Everyone who submitted gets a grade of 1 (the max) /

We're not checking submissions! We wanted you to learn how to
make sure that assert statements are executed.
We're pleased with how many people are already working on
A1, as evidenced by Piazza activity

Please be sure to look at Piazza note @68 every day for
frequently asked questions and answers

It's due Friday night

Groups: Forming a group of two? Do it well before you submit — at

least one day before. Both members must act: one invites, the other
accepts. Thereafter, only one member has to submit the files.

A2: Practice with strings

Now available on course website + CMS

References to text and JavaSummary.pptx

A bit about testing and test cases

Class Obiject, superest class of them all.
Text: C.23 slide 30

Function toString() C.24 slide 31-33
Overriding a method C15-C16 slide 31-32
Static components (methods and fields) B.27 slide 21, 45

Java application: a program with a class that declares a
method with this signature:

public static void main(String[])

—
[

Homework

Read the text, Appendix A.1-A.3
Read the text, about the if-statement: A.38—A.40

Visit course website, click on Resources and then on Code
Style Guidelines. Study

2. Format Conventions
4.5 About then-part and else-part of if-statement

A bit about testing

Test case: Set of input values, together with the expected output.

Develop test cases for a method from its specification --- even
before you write the methods body.

/** = number of vowels in word w.
Precondition: w contains at least one letter and nothing but letters */

public int numberOfVowels(String w) {
Developing test cases

\ first, in “critique”
mode, can prevent

How many vowels in each of these words? wasted work and
creek CIrors

SYZYQY

Class W (for Worker)

/** Constructor: worker with last name n, SSN s, boss b (null if none).
Prec: nnot null, sin 0..999999999 with no leading zeros.*/
public W(String n, int s, W b)

/** = worker's last name */

public String getL.name() W@af W
/#% = last 4 SSN digits */ Iname | “Obama
public String getSsn() ssn 123456789

boss null

/** = worker's boss (null if none) */
public W getBoss() W(...) getlLname()

%% et hoss o b */ getSsn() getBoss() setBoss(W)

public void setBoss(W b) toString()
equals(Object) hashCode()

Contains other methods!

Class Obiject: the superest class of them all

Java: Every class that does not
extend another extends class
Object. That is,

public class W {...}
is equivalent to

public class W extends Object {...}

We often leave off this to
reduce clutter; we know that it
is effectively always there.

We draw obiject like this

W@af
toString()

Object

equals(Object) hashCode()

Iname | “Obama’
ssn 123456789
boss null

W(...) getLname()

\\4

getSsn(), getBoss() setBoss(W)

A note on design

Don’t use extends just to get access to hidden
members!

ic class PhD {
rotected String name;

pu

A note on design
5

71 Don’t use extends just to get access to hidden
members!

A note on design

Don’t use extends just to get access to hidden
members!

A should extend B if and only if A “is a” B

An elephant is an animal, so Elephant extends Animal
A car is a vehicle, so Car extends Vehicle

An instance of any class is an object, so
AnyClass extends java.lang.Obiject

A PhDTester is not a PhD student!

The inheritance hierarchy should reflect modeling
semantics, not implementational shortcuts

What is “the name of” the object?

The name of the object below 1s
PhD@aal1bb24

It contains a pointer to the object —1.e. its address in memory, and
you can call 1t a pointer 1f you wish. But it contains more than that.

Variable e, declared as

PhD e;
PhD@aal1bb24

contains not the object but the PrD
name of the object (or a pointer . —
to the object). name | Mumsie
e | PhD@aallbb24 adl|null | ad2|null
PhD .
advisees |1

Method toString

toString() in Obiject returns the name of the object: W@af

Java Convention: Define toString() in cl_W@af
any class to return a representation of an W@ af
object, giving info about the values in its Obiect
fields. toString() ...
New definitions of toString() override W
the definition in Object.toString() Iname | “Obama’
, : ssn 123456789
In appropriate places, the expression
boss null

¢ automatically does c.toString()
getSsn() ...

c.toString() calls this method == t0String() ...

Method toString

toString() in Obiject returns the name of the object: W@af

public class W { cl. W@af
W@af
, . . Object
/** Return a representation of this object */ toString() ...
public String toString() { W
return “Worker ” + Iname + “.” + Iname | “Obama
ssn
“Soc sec: ...” + getSSn() + “.” 123456789
boss null
(boss ==null ? *“” : “Boss ” + boss.Ilname + “.”);

getSsn() ...

1

’ c.toString() calls this method == t0String() ...

Another example of toString()

/** An 1nstance represents a point (X, y) in the plane */
public class Point {

] . , Point@fa8
private int x; // x-coordinate :
private int y; // y-coordinate il

X| 9 |yl 5
/** = repr. of this point in form “(x,y)” */
public String toString(‘)‘ {” (9, 5)

return “(C + x + “,7 +y +)7;

¥

Function toString should give the values in the
fields in a format that makes sense for the class.

What about this

this keyword: this evaluates to the name of the
object in which it occurs

Let’s an object instance access its own object
reference

Example: Referencing a shadowed class field

public class Point

public int x
public int y

//constructor

{
0;

0;

public Point(int x, int y) {

X
Y

X7y
Yi

@ @
(_a)

public class Point
public int x
public int y

//constructor
public Point(int x, int y)

this.x
this.y

X7y
Yi

{
0;

0;

{

Intro to static components

/** = “this object is ¢' s boss” . | |
Pre: c is not null. */ x.1sBoss(y) is false
public boolean isBoss(W ¢) {

y.1sBoss(x) 1s true
return this == c.boss;

J x| W@b4 y |IW@af
Spec: return the value of W@b4 W@af
that true-false sentence. W W
True if this object is c’s T Ta——
Iname | " Jo” Iname | "Om
boss, false otherwise
boss W@af boss | null
keyword this evaluates isBoss(W ¢) { isBoss(W ¢) {
to the name of the object return

in which it appears this == c.boss; }

Intro to static components

Body doesn’t refer to any

/**="bisc s boss’ . field or method in the object.
Pre: b and ¢ are not null. */ Why put method in object?

public boolean isBoss(W b, W.£) {
return b == c.getBoss();

x(W@b4| y |W@af

)
W@b4 W@af
W W
‘. . L . Iname | “Jo” Iname | “Om”
/** = "this object1s ¢ s boss .
Pre: ¢ is not null. */ boss |\W@af boss | null
public boolean isBoss(W ¢) { e 21 ssh| 35
return this == c.boss; isBoss(W) isBoss(W)

) isBoss(W, W) isBoss(W, W)

Intro to static components

static: there is only one

/%% = “bisc’ s boss” . copy of the method. It is

Pre:bandc a null. */
public static boolean isBoss(W b, W ¢) {
return b == c.getBoss();

not in each object

} Box for W (objects, static components)
W@b4 W@af
A4 W
lname | “Jo” | Iname | “Om”
Preferred: boss ' W@af boss | null
W.isBoss(x, Y) ssn| 21 ssn| 35
isBoss(W) isBoss(W)

X|W@b4 y W@af isBoss(W,W)

Good example of static methods

java.lang.Math

http:/ /docs.oracle.com /javase /7 /docs/api/java /lang /Math.html

Java application

Java application: bunch of classes with at
least one class that has this procedure:

public static void main(String[] args) {
Type String[]: array of

} elements of type String.
We will discuss later

Running the application effectively calls the method main

Command line arguments can be entered with args

Uses of static variables:
Maintaining info about created objects

To have numObijects contain the
number of Objects of class W
that have been created, simply
increment it in constructors.

public class W {
private static int numObijects;

/** Constructor: */

public W(...) {
W@bd W@12
numObjects = W W
numObijects + 1;
) Iname “Ob” | Iname |“Bid”

numQObjects | 2

Box for W

Uses of static variables:
Implementing the Singleton pattern

Only one Singleton can ever exist.
public class Singleton {

private static final Singleton INSTANCE = new Singleton();

private Singleton() {} // ... constructor

public static Singleton getlnstance() {
return INSTANCE; Singleton@x3k3

} Singleton

// ... methods

INSTANCE | Singleton@x3k3

Box for Singleton

