
CS/ENGRD 2110
SPRING 2015
Lecture 4: The class hierarchy; static components
http://courses.cs.cornell.edu/cs2110

1

Announcements
2

!  A0 has been graded
!  Everyone who submitted gets a grade of 1 (the max)
!  We're not checking submissions! We wanted you to learn how to

make sure that assert statements are executed.

!  We're pleased with how many people are already working on
A1, as evidenced by Piazza activity
!  Please be sure to look at Piazza note @68 every day for

frequently asked questions and answers
!  It's due Friday night
!  Groups: Forming a group of two? Do it well before you submit – at

least one day before. Both members must act: one invites, the other
accepts. Thereafter, only one member has to submit the files.

!  A2: Practice with strings
!  Now available on course website + CMS

That pesky -ea flag!

References to text and JavaSummary.pptx
3

!  A bit about testing and test cases
!  Class Object, superest class of them all.

 Text: C.23 slide 30

!  Function toString() C.24 slide 31-33

!  Overriding a method C15–C16 slide 31-32

!  Static components (methods and fields) B.27 slide 21, 45
!  Java application: a program with a class that declares a

method with this signature:

 public static void main(String[])

Homework
4

1.  Read the text, Appendix A.1–A.3
2.  Read the text, about the if-statement: A.38–A.40
3.  Visit course website, click on Resources and then on Code

Style Guidelines. Study
 2. Format Conventions
 4.5 About then-part and else-part of if-statement

 A bit about testing
5

Test case: Set of input values, together with the expected output.!

Develop test cases for a method from its specification --- even
before you write the methods body.!

/** = number of vowels in word w.!
Precondition: w contains at least one letter and nothing but letters */!
public int numberOfVowels(String w) {!
 …!
}!

Developing test cases
first, in �critique�
mode, can prevent

wasted work and
errors!

How many vowels in each of these words?
 creek
 syzygy

Class W (for Worker)
6

/** Constructor: worker with last name n, SSN s, boss b (null if none).
 Prec: n not null, s in 0..999999999 with no leading zeros.*/
public W(String n, int s, W b)

/** = worker's last name */
public String getLname()

/** = last 4 SSN digits */
public String getSsn()

/** = worker's boss (null if none) */
public W getBoss()

/** Set boss to b */
public void setBoss(W b)

W@af
W lname �Obama�

ssn 123456789
boss null

W(…) getLname()
getSsn() getBoss() setBoss(W)

Contains other methods!

toString()
equals(Object) hashCode()

Class Object: the superest class of them all
7

Java: Every class that does not
extend another extends class
Object. That is,

 public class W {…}

is equivalent to

 public class W extends Object {…}

W@af

W lname �Obama�
ssn 123456789

boss null
W(…) getLname()
getSsn(), getBoss() setBoss(W)

Object toString()
equals(Object) hashCode()

We draw object like this

We often leave off this to
reduce clutter; we know that it
is effectively always there.

A note on design
8

!  Don’t use extends just to get access to hidden
members!

 public class PhD {
 protected String name;
 …
 }
 public class PhDTester extends PhD {
 … if (student.name == …) …
 }

A note on design
9

!  Don’t use extends just to get access to hidden
members!

A note on design
10

!  Don’t use extends just to get access to hidden
members!

!  A should extend B if and only if A “is a” B
! An elephant is an animal, so Elephant extends Animal
! A car is a vehicle, so Car extends Vehicle
! An instance of any class is an object, so

AnyClass extends java.lang.Object
! A PhDTester is not a PhD student!

!  The inheritance hierarchy should reflect modeling
semantics, not implementational shortcuts

What is “the name of” the object?
11

The name of the object below is

 PhD@aa11bb24

It contains a pointer to the object –i.e. its address in memory, and
you can call it a pointer if you wish. But it contains more than that.

�Mumsie�!

null!ad1! ad2!

advisees!

null!

1!

name!

PhD@aa11bb24

PhD@aa11bb24!e!
PhD!

Variable e, declared as
 PhD e;
contains not the object but the
name of the object (or a pointer
to the object).

PhD

Method toString
12

Object
W@af

lname �Obama�
ssn 123456789

boss null

W

getSsn() …

toString() …

toString() in Object returns the name of the object: W@af

Java Convention: Define toString() in
any class to return a representation of an
object, giving info about the values in its
fields.!

New definitions of toString() override
the definition in Object.toString()!

c W@af

toString() … c.toString() calls this method

In appropriate places, the expression
c automatically does c.toString()!

Method toString
13

Object
W@af

lname �Obama�
ssn 123456789

boss null

W

getSsn() …

toString() …

toString() in Object returns the name of the object: W@af

public class W {!

 …!

 /** Return a representation of this object */!

 public String toString() {!

 return “Worker ” + lname + “.” +!

 “ Soc sec: …” + getSSn() + “.” +!

 (boss == null ? “” : “Boss ” + boss.lname + “.”);!

 }!

c W@af

toString() … c.toString() calls this method

Another example of toString()
14

/** An instance represents a point (x, y) in the plane */!
public class Point {!
!private int x; // x-coordinate!
!private int y; // y-coordinate!
!…!
!/** = repr. of this point in form �(x, y)� */!
!public String toString() {!

 ! !return “(” + x + “, ” + y + “)”;!
!}!

}!

Point@fa8
Point

x 9 y 5

Function toString should give the values in the
fields in a format that makes sense for the class.!

(9, 5)

What about this!
15

!  this keyword: this evaluates to the name of the
object in which it occurs

!  Let’s an object instance access its own object
reference

!  Example: Referencing a shadowed class field
 public class Point {!

 public int x = 0;!
 public int y = 0;!
 !
 //constructor!
 public Point(int x, int y) {!

! x = x;!
! y = y;!

 }!
}!

public class Point {!
 public int x = 0;!
 public int y = 0;!
 !
 //constructor!
 public Point(int x, int y) {!

! this.x = x;!
! this.y = y;!

 }!
}!

Intro to static components
16

W@af
W

lname �Om”
boss null

isBoss(W c) {
…}

W@b4
W

lname �Jo”
boss W@af

isBoss(W c) {
 return
 this == c.boss; }

/** = �this object is c�s boss�.!
 Pre: c is not null. */!
public boolean isBoss(W c) {!
 return this == c.boss;!
}!

keyword this evaluates
to the name of the object

in which it appears!

x.isBoss(y) is false!

y W@af

x W@b4

y.isBoss(x) is true!

Spec: return the value of
that true-false sentence.
True if this object is c’s
boss, false otherwise

Intro to static components
17

W@af
W

lname �Om”

ssn 35

boss null

isBoss(W)

W@b4
W

lname �Jo”

ssn 21

boss W@af

isBoss(W)

/** = �this object is c�s boss�.!
 Pre: c is not null. */!
public boolean isBoss(W c) {!
 return this == c.boss;!
}!

/** = �b is c�s boss�.!
 Pre: b and c are not null. */!
public boolean isBoss(W b, W c) {!
 return b == c.getBoss();!
}!

isBoss(W,W) isBoss(W,W)

y W@af

x W@b4

Body doesn’t refer to any
field or method in the object.

Why put method in object?

Intro to static components
18

W@af
W

lname �Om”

ssn 35

boss null

isBoss(W)

W@b4
W

lname �Jo”

ssn 21

boss W@af

isBoss(W)

/** = �b is c�s boss�.!
 Pre: b and c are not null. */!
public static boolean isBoss(W b, W c) {!
 return b == c.getBoss();!
}!

isBoss(W,W) y W@af

x W@b4

static: there is only one
copy of the method. It is
not in each object

Box for W (objects, static components)

x.isBoss(x, y)
y.isBoss(x, y)

Preferred:
W.isBoss(x, y)

Good example of static methods
19

!  java.lang.Math
!  http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html

Java application
20

Java application: bunch of classes with at
least one class that has this procedure:
 public static void main(String[] args) {
 …
 }

Type String[]: array of
elements of type String.
We will discuss later

Running the application effectively calls the method main

Command line arguments can be entered with args

Uses of static variables:
 Maintaining info about created objects

21

W@12

W

lname �Bid�

W@bd

W

�Ob� lname

numObjects 2

Box for W!

public class W {
 private static int numObjects;
 …

}

To have numObjects contain the
number of Objects of class W
that have been created, simply
increment it in constructors.

/** Constructor: */
public W(…) {
 …
 numObjects =
 numObjects + 1;
}

public class Singleton {
 private static final Singleton INSTANCE = new Singleton();

 private Singleton() { } // ... constructor

 public static Singleton getInstance() {
 return INSTANCE;
 }

 // ... methods
}

Uses of static variables:
 Implementing the Singleton pattern

22

Singleton@x3k3

Singleton

INSTANCE

Box for Singleton!

Only one Singleton can ever exist.

…

Singleton@x3k3

