CS/ENGRD 2110
SPRING 2015

References to text and JavaSummary.pptx

]

A bit about testing and test cases

11 Class Object, superest class of them all.
Text: C.23 slide 30

o Function toString() C.24 slide 31-33
o Overriding a method C15-C16 slide 31-32
11 Static components (methods and fields) B.27 slide 21, 45

o Java application: a program with a class that declares a
method with this signature:

public static void main(String[])

A bit about testing
[s |

Test case: Set of input values, together with the expected output.

Develop test cases for a method from its specification --- even
before you write the methods body.

/** = number of vowels in word w.
Precondition: w contains at least one letter and nothing but letters */

public int numberOfVowels(String w) {
Developing test cases

) first, in “critique”

mode, can prevent

How many vowels in each of these words? wasted work and

creek €rTors
syzygy

Announcements

o AO has been graded
o Everyone who submitted gets a grade of 1 (the max)

That pesky -ea flag!

o We're not checking submissions! We wanted you to learn how to
make sure that assert statements are executed.
0 We're pleased with how many people are already working on
A1, as evidenced by Piazza activity

[Please be sure to look at Piazza note @68 every day for
frequently asked questions and answers

o It's due Friday night

o Groups: Forming a group of two? Do it well before you submit — at
least one day before. Both members must act: one invites, the other
accepts. Thereafter, only one member has to submit the files.

o A2: Practice with strings

o Now available on course website + CMS

Homework
KN

—

Read the text, Appendix A.1-A.3
2. Read the text, about the if-statement: A.38—A.40
3. Visit course website, click on Resources and then on Code
Style Guidelines. Study
2. Format Conventions
4.5 About then-part and else-part of if-statement

Class W (for Worker)
[6|

/** Constructor: worker with last name n, SSN s, boss b (null if none).
Prec: nnotnull, sin 0..999999999 with no leading zeros.*/
public W(String n, int s, W b)

/** = worker's last name */

public String getLname() W@af
/** = last 4 SSN digits */ Iname

public String getSsn() ssn 123456789

/** = worker's boss (null if none) */ LD lil

public W getBoss() W(...) getlname()

%% Set boss to b */ getSsn() getBoss() setBoss(W)
public void setBoss(W b) toString()

equals(Object) hashCode()
Contains other methods!

Class Obiject: the superest class of them all

Java: Every class that does not
extend another extends class We draw obiject like this
Object. That is,

W@af

ublic class W {... .
P bt toString()

is equivalent to equals(Object) hashCode()

public class W extends Object {...} |hame W

ssn |123456789
boss [l |

W(...) getlname()
getSsn(), getBoss() setBoss(W)

We often leave off this to
reduce clutter; we know that it
is effectively always there.

A note on design

0 Don’t use extends just to get access to hidden
members!

What is “the name of” the object?

The name of the object below is
PhD@aal1bb24

It contains a pointer to the object —i.e. its address in memory, and

you can call it a pointer if you wish. But it contains more than that.

Variable e, declared as
PhD e¢;
contains not the object but the PhD@aa11bb24

name of the object (or a pointer -
to the object). name
e | PhD@aal1bb24 adl ad2

PhD advisees

A note on design

01 Don’t use extends just to get access to hidden
members!

A note on design

0 Don’t use extends just to get access to hidden
members!
0 A should extend B if and only if A “is a” B
An elephant is an animal, so Elephant extends Animal
A car is a vehicle, so Car extends Vehicle

An instance of any class is an object, so
AnyClass extends java.lang.Object
A PhDTester is not a PhD student!

0 The inheritance hierarchy should reflect modeling
semantics, not implementational shortcuts

Method toString

toString() in Object returns the name of the object: W@af

Java Convention: Define toString() in C
any class to return a representation of an W@qf
object, giving info about the values in its —

fields. toString()

New definitions of toString() override
the definition in Object.toString()

[Obiect|
W

Iname | “Obama”

In appropriate places, the expression N 123456789
¢ automatically does c.toString() boss[_null |
getSsn() ...

c.toString() calls this method =—————————" toString() ...

Method toString

toString() in Object returns the name of the object: W@af

c
W@af

toString() ...
L w]
iname [“Obama”
ssn _-}
“Soc sec: ...” + getSSn() + “.” + 12345678
boss | nuil |

getSsn() ...

public class W {

/** Return a representation of this object */
public String toString() {

return “Worker ” + Iname +

(boss ==null ? “” : “Boss ”” + boss.Iname + “.”);

N

1 c.toString() calls this method toString() ...

What about this

this keyword: this evaluates to the name of the
object in which it occurs

Let’s an object instance access its own object
reference

Example: Referencing a shadowed class field

public class Point {
public int x = 0;
public int y = 0;

public class Point {
public int x = 0;
public int y = 0;

//constructor

public Point(int x, int y) {

X = x; this.x = x;

Y = Yi this.y = y;
} }
} }

//constructor
public Point(int x, int y) {

Intro to static components

Body doesn't refer to any
field or method in the object.
Why put method in object?

xW@b4| y |W@af

W@b4 W@caf
Iname Iname

boss boss @

/¥% =“bis ¢’ s boss”.
Pre: b and ¢ are not null. */
public boolean isBoss(W b, W,
return b == c.getBoss();

/*% = “this object is ¢’ s boss”.
Pre: ¢ is not null. */

public boolean isBoss(W ¢) { - 2.1- | ssn| 35|
isBoss(W) isBoss(W)

return this == c.boss;
isBoss(W,W) isBoss(W,W)

1
J

Another example of toString()

/** An instance represents a point (X, y) in the plane */
publl(.: cl:ls§ Ptomt/f . Point@fa8
private int x; // x-coordinate
Point

private int y; // y-coordinate
S
/** = repr. of this point in form “(x,y)” */

public String toString() { =
return “(” + X + <7 +y +)7; ;

¥
¥
Function toString should give the values in the
fields in a format that makes sense for the class.
Intro to static components
/¥*% = “this object is ¢’ s boss”.

Pre: ¢ is not null. */ x.isBoss(y) is false

public boolean isBoss(W c¢) { yisBoss(x) is true
return this == c.boss;

3 x|W@b4 y |W@af

Spec: return the value of W@b4 W@af
that true-false sentence.
True if this object is c’s Iname Iname
boss, false otherwise
boss W@Gf boss [null]
keyword this evaluates isBoss(W c) { isBoss(W c) {

to the name of the object return
in which it appears this == c.boss; }

Intro to static components
static: there is only one
4% = “bis ¢’ s boss” . copy of the method. It is
Pre:bandc a fwll. */ keflinleachichlest
public static boolean isBoss(W b, W ¢) {

return b == c.getBoss();
} Box for W (objects, static components)
W@b4 W@caf
Iname Iname

Preferred: boss boss @

W.isBoss(x, y) ssn| 21 ssn| 35
isBoss(W) isBoss(W)

isBoss(W,W)

x\W@b4| y |W@of

Good example of static methods Java application

iqvq,lqng.quh Java application: bunch of classes with at
hnp://docs.orqcle.com/icvuse/7/docs/qpi/iuvc/lung/Muth.hfml |eGST one C|GSS thIf hCIS thS procedure:

public static void main(String[] args) {
Type String[]: array of
} elements of type String.
We will discuss later

Running the application effectively calls the method main

Command line arguments can be entered with args

Uses of static variables: Uses of static variables:
Maintaining info about created objects Implemenﬁng the Singleton pattern
To have numObjects contain the Only one Singleton can ever exist.
public class W { number of Objects of class W public class Singleton {
private static int numObijects; 14t have been created, simply private static final Singleton INSTANCE = new Singleton();

increment it in constructors.

private Singleton() {} // ... constructor
/** Constructor: */

public W(...){

public static Singleton getinstance() {
W@bd w@12 return INSTANCE; Singleton@x3k3

numObijects = . }
numObijects + 1;
} Iname “Ob” | Iname // ... methods

Box for W Box for Singleton

