
CS2110 Preparing for Prelim 2 Tuesday, 21 April 2015	

 (Where and When? Tuesday evening, 21 April
° 5:30-7:00PM. Statler Aud., if your student ID is even.

° 7:30-9:00PM. Statler Aud. if your student ID is odd.

° Do you have permission to have a quiet room or more
time? See the note about P2 on the course website.

° Review session: Sun, 19 Apr, 1-3pm, Philipps 101

Note: If a conflict prohibits you from taking the exam at
the assigned time, you MUST complete assignment
P2Conflict on the CMS before the end of Thurs, 16
April. (If you can’t take it at the assigned time, you may
take it at the other time; we just need to know about it.)
P2Conflict requires you to give us details.

Read the statement about Prelim 2 on the course exam
webpage for complete details:
cs.cornell.edu/courses/CS2110/2015sp/exams.html.

The test covers material through lecture 20, on 9 April,
but not that week’s recitation. Details appear below.

Assignment A7 is due close to the prelim; completing it
will help you on the prelim, because you will under-
stand heaps and Dijkstra’s shortest-path algorithm.

You are expected to know everything that was required
for Prelim 1. Look at the Prelim 1 handout.

To prepare (1) Practice writing programs in Eclipse,
(2) Study Piazza note @282 (Study Notes),
(3) Memorize definitions/principles,
(4) Study lecture slides,
(5) Attempt past prelims on the course website, and
(6) Read the textbook.

The overall length and balance of the exam will be
similar to past prelim 2s, but the exam covers only
topics presented on this page. Ignore past prelim-2
questions that touch on topics that are not listed below.

Topics to be covered on Prelim 2

1. Loops and recursion. Use of invariants to develop
loops and argue about their correctness. We used these
on searching/sorting algorithms and graph algorithms.
See an attachment to Piazza note @282.

2. Algorithmic complexity. Big-O complexity notation
and the associated definitions. Understand how to derive
a big-O complexity formula for an algorithm, best-
case/worst-case/average complexity, the notion that
what this counts is some sort of "operation we care
about" and not every line of code, etc. See an
attachment to Piazza note @282.

3. Abstract data types (ADTs) and how they can be
defined in Java (using interfaces).

4. Searching and sorting. Know these algorithms:
Linear search, binary search, insertion sort, selection
sort, mergesort, partition algorithm of quicksort,

quicksort, heapsort. “Knowing” means: being able to
develop them given their specifications, using high-
level statements for the parts that massage the array
(e.g. “merge sorted partitions b[h..k] and b[k+1..n]”). If
you don’t understand what we mean, look at the
appropriate lecture notes. Know the average- and worst-
case complexity of these algorithms. Understand min-
heaps, how a min-heap can be used to implement a
priority queue, and how a max-heap is used in heapsort.

5. Hashing. Hashing as presented in recitation. The
relation between functions equals and hashcode.

6. Interfaces. Review the interface lecture materials and
make sure you understand the ideas. Be familiar with
the standard operations that are supported by common
data structures implementing Collection<T>, List<T>,
Set<T>, Map<T>, ArrayList<T>, etc.

7. Trees: Trees, binary trees, data structures for binary
and non-binary trees, BSTs. Grammars used to define
languages —just basic stuff (no need to know about
recursive descent parsing). Parsing and parse trees,
expression trees and their traversals: preorder, inorder,
postorder. Note: Tree rotations and AVL trees are not
covered in Prelim 2.

8. Graphs. Kinds of graphs (e.g. planar, sparse, dense).
DFS and BFS, topological ordering, Dijkstra’s shortest
path algorithm, spanning trees (Kruskal and Prim). Ex-
pect questions that involve graphs: be able to tell us
which algorithm is the best choice for solving a prob-
lem, precisely what that algorithm does, why it would
solve a problem, and how costly it might be.

9. GUIs. You will not be asked to write GUI programs.
We may ask you to read and understand small ones.
Know the three major container classes (JFrame, JPanel,
and Box), what their layout managers are, and how they
lay out components. Know the three steps required to
listen to events (see lecture slides).

10. Keep in mind the following:

A. Being able to write correct Java code is critical.
We will continue to have coding questions. We plan to
grade them with a bit more insistence on correct Java.
You may lose credit for code that is long, is inefficient,
or reveals a poor grasp of Java features.

B. We expect you to know Java —not just the bits and
pieces of Java used on slides in class. If there is some
aspect of Java that worries you, read about it in
Appendix A or look in the JavaSummary.ppt.

C. Use the powerful built-in Java tools. We give
maximum credit for concise, elegant code that doesn’t
reinvent the wheel. Know how to use standard Java
classes like ArrayList, HashSet, and HashMap and
know the basic preexisting methods available for
Collections, Arrays, Strings, etc.

