3/8/15

Review Session

CS2110 Prelim #1

Primitive types vs classes

e Variabledeclarations:

o int i = 5;

o Animal a = new Animal (“Bob”) ;
e How does “==" behave?

a | Animal@0x36 Animal@0x36
i ..5 name | ‘Bob”

A 4

Default values

e What value does a field contain when it is declared but not

instantiated?
o Animal a; //null
o Object ob; //null
o int i; /70
. //false
o boolean b; //"\0’ (null byte)
o char c; //0.0
o double d;

Wrapper Classes (Boxing)

class Character contains useful methods

e Examples of useful static Character methods:
o Character.isDigit(c)
o IntCharacter.isLetter(c)

e Autoboxing
o Integer x = 100;
o int y = x;

String literals

String instantiation:

e Constructor: String s = new String(“dog”) ;
e Literal: String s2 = “dog”;

e Roughly equivalent, but literal is preferred

s | String@0x62

A\ 4

String@0x62

Strings are immutable

s2 lString@Ox28 }—P String@0x28

“dog’

“dog”

Once a String is created, it cannot be changed

e Methods such as toLowerCase and substring return new
Strings, leaving the original one untouched

e In order to “modify” Strings, you instead construct a new String
and then reassign it to the original variable:
o String name = “Gries”;
O name = name + “, “;

o0 name = name + “David”;

3/8/15

String concatenation

Operator + operator is called catenation, or concatenation
e [f one operand is a String and the other isn’t, the other is
converted to a String
e Important case: Use “” + exp to convert exp to a String.
e Evaluates left to right. Common mistake:
o System.out.println(“sum: “ + 5 + 6);
= Prints “sum: 56~
o System.out.println(“sum: “ + (5 + 6));
= Prints “sum: 11”

Other String info

o Always use equals to compare Strings:
o strl.equals(str2)

o Very useful methods:
o length, substring (overloaded), indexOf, charAt

e Useful methods:
o lastIndexOf, contains, compareTo

1D Array Review

Animal[] pets = new Animal[3];

Java arrays

Java arrays do not change size!

pets.length is 3 pets |1 Array@0x10 — A@OxaD A2
pets[0] = new Animal(); b @0xa @0x
ts[0] .walk() Array@0x10 0| “Cornell” 0| “Cornell”
pe . ; .
0 bBig 1 haca’ R
null
. L 2
Why is the following |Ilegal? B~ String[] b = {“Cornell”, “Ithaca”}; 3
pets[l] = new Object(); o String[] bBig = Arrays.copyOf (b, 4);
2 | null b = bBig;
2D arrays: An array of 1D arrays. 2D arrays: An array of 1D arrays.
Java only has 1D arrays, whose elements can also be arrays. How many rows in b? b.length
int[][] b = new int[2][3]; How many columns inrow 0? b[0].length
How many columns inrow 1? b[1].length
This array has 2 int[] arrays of length 3 each.
00 0o
10 10
SES i :

b /
0 00
1 10
20

3/8/15

2D arrays: An array of 1D arrays.

int[][] b = new int[2][];

The elements of b are of type int[] .

b

0 | null
1 | null

2D arrays: An array of 1D arrays.

int[][] b = new int[2][];

b[0] =
b[l] =

new int[]
new int[]

b is called a ragged array

{0,4,1,3,9,3};
{1110,2110,3110};

0 1110
1 2110
2 3110

OB WN 2O
w o w s o

The superclass of exceptions: Throwable

class Throwable:

e Superclass of Error and
Exception

e Does the “crashing”

e Contains the constructors

class Error:

e A very serious problem and
should not be handled
Example: StackOverflowError

and methods

e Throwable ()
e Throwable (String)

class Exception:

o Reasonable application might
want to crash or handle the
Exception in some way

A Throwable instance: ArithmeticException

ArithmeticException@x2

Throwable

detailMessage

Exception

RuntimeException

AvrithmeticException

There are so many exceptions
we need to organize them.

Throwable

‘Exception‘ ‘ Error ‘

RuntimeException

ArithmeticException

Bubbling up exceptions

class Ex {
void first() {

Exceptions will bubble up the call
stack and crash the methods that

at Ex.third(Ex.java:11)
at Ex.second(Ex.java:7)
at Ex.first(Ex.java:3)

1
2

called it. 3 second () ;
4 }
5

Method call: first(); 6 void second() {
7 third() ;
8 }

Console: 9

Exception in thread “main” 10 void third() {

java.lang.ArithmeticException: E 11 int ¢ = 5/0;

12 }
13 }

AE = ArithmeticException

Try-catch blocks

An exception will bubble up the call
stack and crash the methods that
called it

... unless it is caught.

po@NauswNe

catch will handle any exceptions
of type Exception (and its 1
subclasses) that happened inthe 13

try block 14
15

Console: 16
in 17
error 18

class Ex {
void first() {

|;I> second() ;

}

void second() {
try {

i System.out.println(“in”) ;
third() ;

} catch\(Exception e) {

|;J> System.out. prxtt\ (Mout”) ;
2

System. o)ut . p%b‘mﬂ:w;’)b

ArithmeticException!
void third() {
int ¢ = 5/0;

Exceptions

How to write an exception class

/** Bn instance is an e

ception */
public cla

OurException extends Exception {

ctor: an instance with message m*/

public OurException(String m) {

super (m) ;

}

/** Constructor: an instance with default message */

public OurException() |
this (“Default message!”);
}

Abstract Classes

A Little More Geometry!

Shape
X____
y___
Square Triangle Circle
area() area() area()
size base_ radius
height

Abstract Classes

A Partial Solution:

Add method area to class Shape:

public double area() {
return 0;

public double area() {
throw new RuntimeException (“area not
overridden”);

Abstract Classes

Problems not solved

1. What is a Shape that isn’t a Circle, Square, Triangle,
etc? What is only a shape, nothing more specific?
a.Shape s = new Shape (...); Should be
disallowed

2. What if a subclass doesn’t override area()?
a. Can't force the subclass to override it!
b. Incorrect value returned or exception thrown.

Abstract Classes

Solution: Abstract classes

Abstract class
Can't be instantiated.

Shape () illegal
public abstra class S geﬁ'eq{app() illegal)

public double area() {
return 0;

Abstract Classes

Solution: Abstract methods

e Can have
implemented

public abstract class Shape { methods, too

public abstract double area(); e Place abstract

} \
Abstract method

Subclass must
override.

method only in
abstract class.

e Semicolon
instead of body.

3/8/15

Abstract Classes

Abstract Classes, Abstract Methods

1. Cannot instantiate an object of an abstract class.
(Cannot use new-expression)

1. A subclass must override abstract methods.

(but no multiple inheritance in Java, so...)

Interfaces

Interfaces

public interface Whistler {
void whistle() ;
int MEANING OF LIFE= 42;
} - - o fields are automatically
public, static, and
final (i.e. constants)
class Human extends Mammal implements Whistler {

}
\ Must implement all methods in the

implemented interfaces

e methods are automatically
public and abstract

Interfaces

Multiple interfaces

public interface Singer { (Classes can implement several
void singTo (Human h) ; interfaces! They must implement
} all the methods in those interfaces
they implement.

class Human extends Mamma

}
\ Must implement singTo (Human h)

and whistle ()

implements Whistler, Singer {

Interfaces

Solution: Interfaces

Animal

| Mammal | | Bird |

Interface Whistler offers
promised functionality to
classes Human and Parrot!

Whistler

| Human || Dog | Parrot |

Interfaces

Casting

Human h = new Human () ;

Object o = (Object) h; Object
Animal a = (Animal) h; |
Mammal m = (Mammal) h; Animal
Singer s = (Singer) h; |

Whistler w (Whistler) h; Whistler Mammal Singer

All point to the same memory ado&is! | /

Human

Interfaces

Casting

Human h = new Human();
Object o = h; Object
Animal a = h; |
Mammal m = h; Automatic
. ! up-cast Animal
Singer s = h;
Whistler w = h; |
Whistler Mammal Singer
Forced
down-cast

N v

Human

3/8/15

Casting up to an interface automatically

class Human .. implements Whistler {

void listenTo (Whistler w) {...} Object
’ |
Human h = new Human(...);
Human hl = new Human(...); Animal
h.listenTo (hl); |
Parrot p = new Parrot(...);

Whistler Mammal

Human

h.listenTo (p);

Arg h1 of the call has type Human. Its value is being stored\
in w, which is of type Whistler. Java does an upward cast
automatically. Same thing for p of type Parrot.

Shape implements Comparable<T>

public class Shape implements Comparable<Shape> {

Jre

public int compareTo (Shape s) {
double diff= area() - s.areaf();
return (diff == 0 2 0 : (diff < 0 2 -1 : +1));

Beauty of interfaces

Arrays.sort sorts an array of any class C, as long as C implements
interface Comparable<T> without needing to know any
implementation details of the class.

Classes that implement Comparable:

Boolean Byte Double Integer
String BigDecimal BigInteger Calendar
Time Timestamp and 100 others

String sorting

Arrays.sort (Object[] b) sorts an array of any class C, as long
as C implements interface Comparable<T>.

String implements Comparable, SO you can write
String[] strings= ...;

Arrays.sort (strings);

\ During the sorting, when comparing

elements, a String’s compareTo
function is used

Abstract Classes vs. Interfaces

Four loopy questions

e Abstract class represents e Interface is what something
something can do
e Sharing common code e A contract to fulfill
between subclasses e Software Engineering
purpose
Similarities:

e Can'tinstantiate
e Must implement abstract methods

1. Does it start right?

//Precondition Does initialization make
/ invariant P true?

Initialization;

// invariant: P 3. Does repetend S make

while (B) { S } «— progress toward

T termination?
2. Does it stop right? \ 4. Does repetend S

Does P and B imply keep invariant P true?
the desired result?

3/8/15

Add elements backwards

Precondition b | ??2? |
h
Invariant b| 2?7 | s = sum |
h
Postcondition b| s = sum |

Add elements backwards

0 h
INV: b| 2?72 | s = sum

int s = 0;
int h = b.length-1;
while (h >= 0) { . Does it start right?
s = s + blh]; . Does it stop right?
h--; . Does it keep the invariant true?
} . Does it make progress toward
termination?

Linear search time

Linear search for v in an array b of length n

b | s

worst-case time. v is not in b[0..n-1], so linear search has to look
at every element. Takes time proportional to n.

expected (average) case time. If you look at all possibilities where
v could be and average the number of elements linear search has
to look at, you would get close to n/2. Still time proportional to n.

Binary search time (b[0..n-1] is sorted)

h= -1; t= n; b[h+1..t-1] starts out with n

// invariant: P (below) elements in it.

while (h < t-1) { Each iterati)]
int e= (h+t)/2; ach itera !on cuts size o
L (ble] = vy he e b[h+1..t-1] in half.

else t=e; worst-case and expected

! case time: log n
// b[0..h] <= v < b[t..n-1]
0 h t n

inv P: b| <= v | ? | > v

Insertion sort of b[0..n-1]

h= 0; Worst-case time for Push: h swaps
// invariant: P (below)
while (h < n) {
Push b[h] down into
its sorted position 1+2+3+..+n-1=n(n-1)/2
in b[0..h];
h= h+1; Worst-case and average case time:
} proportional to n*2

Average case time for Push: h/2 swaps

0 h n

Selection sort of b[0..n-1]

h= 0) To find the min value of b[h..n-1] takes
// invariant: P (below) time proportionalto n-h.
while (h < n) {

Swap b[h] with min n+(n-1)+...+3+2+1 =n(n-1)/2

value in b[h..n-1];
h= h+1; Worst-case and average case time:
} proportional to n"2
0 h n

3/8/15

Quicksort of b[0..n-1]

partition(b, h, k) takes time proportional to
size of b[h..k]

Best-case time: partition makes both sides

equal length
[timento partition
[T time nto partition
[T 1T] time n to partition

depth: proportional to log n therefore: time n log n

Quicksort of b[0..n-1]

/** Sort b[h..k] */
void QS(int[] b, int h, int k)
if (b[h..k] size < 2)
return;
j= partition(b, h, k);
// blh..j-11 <= b[j] <= bl[j+l..k]
QS (h, j-1);
QS (3+1, k)

Someone proved that the
average or expected time
for quicksort is n log n

Quicksort of b[0..n-1]

partition(b, h, k) takes time proportional to size of b[h..k]

Worst-case time: partition makes one side empty

[timentoparion
1 timen-1to partion
1 timen-2to partition

depth: proportional to n therefore: time n*2

What method calls are legal

Animal anj; an.m(args) ;

legal ONLY if Java can guarantee that
method m exists. How to guarantee?

m must be declared in Animal or inherited.

Java Summary

e On the “Resources” tab of the course website
e \We have selected some useful snippets

o We recommend going over all the slides

Casting among types
(int)\342 asts double value 3.2 to an int
any number any number
type expression

narrow —aybe automatic casty s o
byte short int long float double

must be explicit cast, may truncate

char is a number type: (.un.%ﬂ (.r.ha*).&ﬁ.

Unicode representation: 86 v
Page A-9, inside back cover “

3/8/15

Declaration of class Circle
Multi-line comment starts with /* ends with */

Precede every class

/** An instance (object) represents a circle */ **
— with a comment

public class Circle {

Put declarations of
fields, methods in class
body: { ... }

Put class
declaration in
file Circle java

|
}public: Code everywhere can refer to Circle.

Called access modifier
Page B-5 49

Overloading

Possible to have two or more methods with same name
/** instance represents a rectangle */
public class Rectangle {

private double sideH, sideV; // Horiz, vert side lengths

/** Constr: instance with horiz, vert side lengths sh, sv */
public Rectangle(double sh, double sv) {

sideH= sh; sideV= sv;
i

/** Constructor: square with side length s */
public Rectangle(double s) {
sideH=s; sideV=; .
] Lists of parameter types
must differ in some way

Use of this

this evaluates to the name

. . L Memorize this!
of the object in which is appears

/** Constr: instance with radius radius™*/
public Circle(double radius) {
this.radius= radius;

—~

Page B-28

/** An instance represents a shape at a point in the plane */
public class Shape {
private double x, y; / top-left point of bounding box
/** Constructor: a Shape at point (x1, y1) */
public Shape (double x1, double y1) {
x=x1; y=yl;
}
/** return x-coordinate of bounding box*/
public double getX() {
return x;
}
/** return y-coordinate of bounding box*/
public double getY() {
return y;
}

} 52

Class Shape

Object: superest class of them all

Class doesn’t explicitly extend another one? It automatically
extends class Object. Among other
components, Object contains:

Constructor: public Object() {}

/** return name of object */
public String toString()

c.toString() is “Circle@x1”

/** return value of “this object and ob
are same”, i.e. of this == ob */
public boolean equals(Object ob)
Page C-18 3

Java has 4 kinds of variable

. . Field: declared non-static. Is in every object of

pUbllc class Circle { . /class, Default initial val depends on type, e.g. 0
private double radius; for int

Class (static) var: declared static. Only one

rivate static int t; . e
p ’ copy of it. Default initial val depends on type,

e.g. 0 for int
public Circle(double 1) {
double rl=r; Parameter: declared in () of method header. Created during call
radiusrl; before exec. of method body, discarded when call completed.
} Initial value is value of corresp. arg of call. Scope: body.

Local variable: declared in method body. Created during call before exec. of body,
discarded when call completed. No initial value. Scope: from declaration to end ofy
block.

3/8/15

parameter T (you choose name)
Written using generic type
public class Box<T> {

Basic class Box

public class Box {
private Object object;

private T object;
li i 1 ject
p“(')’b'.zcvt":ldo;e, (Object ob) { public void set(T ob) {
)) ’ object = ob;
}

public Object get() { .
return object; public T get() {
) ’ return object;
New code
Box<Integer> b= new Box<Integer>(); }
b.set(new Integer(35));

Integer x= b.get();

" Replace type Object
everywhere by T 5

Linked Lists

(These slides are from the class lectures and
available on the website as well)

Linked Lists

Idea: maintain a list (2, 5, 7) like this:

[al] [a6 | [a8]
=1 | o] v [5] v [1]
next [a6 1 next [a8 3 next [null]

This is a singly linked list

To save space we write names like a6 instead of N@35abcd00

Easy to insert a node in the beginning!

hal 3= | L] v [5] v [1]
2,5,7) next @' next @'_’ next m

[al | a6 [a8 |
hla3/] v 2] v 5] v 1]
[a3 | next [a6 1 next [a8 11 next [oull]
v 8]
next E/ (8' 2,5, 7)

Easy to remove a node if you have its predecessor!

[al | a6 [a2 | [a8 |
hal¥ = L] vls] vis] v [1]
nextla6 F*next[a2 1—next [a8 *next [null]

2,5,8,7) k [264

hlali—

(2,5,7)

Recursion

10

3/8/15

Sum the digits in a non-negative integer

[sum calts itsetst |

/** return sum of digits in n.
* Precondition: n>=0 */
public static int sum(int n) {
if (n < 10) return n;

// { n has at least two digits }
// return first digit + sum of rest
return sum(n/10) + n%10;

}
E.g. sum(7)=7
E.g. sum(8703) = sum(870) + 3;

Stack Frame

A “frame” contains information about a local variables
method call:

At runtime, Java maintains a stack that
contains frames for all method calls that are
being executed but have not completed.
Method call: push a frame for call on stack, assign argument
values to parameters, execute method body. Use the frame for
the call to reference local variables, parameters.

End of method call: pop its frame from the stack; if it is a
function, leave the return value on top of stack.

parameters

return info

11

