NAME:

Write your name and Cornell netid . There are 5 questions on 10 numbered pages. Check now that you
have all the pages. Write your answers in the boxes provided. Use the back of the pages for workspace.
Ambiguous answers will be considered incorrect. The exam is closed book and closed notes. Do not begin

CS2110 Fall 2009 Final Exam
December 16, 2009

until instructed. You have 90 minutes. Good luck!

NETID:

Total

Score

/20

/20

/20

/25

/15

Grader




1. (20 points) Here’s code for Quicksort. The code was on our web site and implements exactly the
algorithm we discussed in class; it hasn’t been changed and it works exactly the way it should.

public class QuickSort<T extends Comparable<T>> implements Sorter<T> {
static Random rand = new Random() ;

public void sort (T[] x) {
sort(x, 0, x.length);
}

// sort the portion of Comparable array x between
// lo (inclusive) and hi (exclusive) in place

// does not touch other parts of x

private void sort(T[] x, int lo, int hi) {

// base case
if (hi <= lo + 1) return;

// Pick the middle element as the pivot
T pivot = x[(lo+hi)/2];

// partition the elements about the pivot

int i = lo;

int j = hi - 1;

while (true) {
// advance indices
while (i < j && x[i] .compareTo(pivot) < 0) i++;
while (i < j && x[]j].compareTo(pivot) > 0) j--;

// done?

if (i == j) break;
// swap

T tmp = x[i];

x[i] = x[]j];

x[j] = tmp;

}

// recursively sort the partition elements
sort(x, lo, 3Jj):
sort(x, j, hi);

(a) 10 points. In class we analyzed the complexity of this algorithm and showed that the typical
complexity is O(n log n). But we also discussed a “worst case” complexity bound. Explain what
conditions provoke the worst-case complexity, and what that complexity is. You must explain your
answer.



Hint: For parts (b) and (c), the specific way of picking the pivot element matters. In the version of
Quicksort given above, this is the line that selects the pivot: T pivot = x[(lo+hi)/2];

(b) 5 points. What would be the complexity of this version of Quicksort if it runs only on pre-sorted
arrays (arrays that are already in the correct sorted order). Briefly explain your answer: a correct answer
without a good explanation will lose points.

(c) 5 points. How would you construct inputs that cause Quicksort to exhibit the worst-case complexity
that you gave us in part (a). Hint: tell us how to do it in words, then illustrate your solution for n=5. You
don’t need to come up with actual code for building worst-case vectors.



2. (20 points) True or false?

In Java, it is possible to write code that can only be type-checked when the program is actually
running.

If two classes A and B implement the same interface I, then A is a subclass of B, or Bis a
subclass of A.

If String s1 = “Cleopatra”, and String s2 = “Cleo”+”patra”, then sl.equals(s2)) returns true.

In Java, it is perfectly legal to have multiple definitions for the same method that have different
types of arguments.

If myArray is of type Array<T>, then the elements of myArray all have the same dynamic type.

Suppose class foo defines method m, subclass foobar extends foo and does not override m.
Then if fb is a foobar object, fb.m() is legal and will runs m as defined in class foo.

Given int a = something, and double b = something else, then ((double) a < b) and (a < (int) b)
are equivalent expressions.

If B is a subclass of A and b is an instance of B, then ((B)(A)b == b) is true.

If an application requires O(1) cost for a particular method, that property would be specified as
part of the type signature and will then be automatically checked by Java.

If any thread terminates by returning from its top-level method, the program in which that
thread was running will terminate too, even if other threads were still active.

Java uses synchronize, wait and notify as tools for threads to coordinate their actions.

When using the predefined Java HashMap<T1,T2>, the programmer must supply two types,
one describing the type of the key and one describing the type of the value.

If foo is of type HashMap<Animal,ArrayList<Gene>> then one might use foo to store and
retrieve the list of genes associated with some animal.

If a recursive method lacks a base case, Java will discover this when you try to compile the
method and will force you to fix the code before it can be executed.

A race condition arises if two or more threads share (reading and writing) an object without
synchronization.

A deadlock can only occur if two or more threads end up waiting for one-another in a “cycle”.

An exception handler is a special block of code that runs when some an exception of a particular
class is thrown. It must fix whatever caused the exception, because when it completes, the
operation that caused the exception will be retried.

If a class includes two methods with the same name but different type signatures, and one
method calls the other, we would say that the method is recursive.

In class we discussed the use of induction to prove things about concurrently executing threads.
In particular, using induction, we can prove that a traffic circle in which cars on the circle have
priority over cars trying to enter will not be subject to deadlock.

a | T
b |T
c | T
d|T

T
f T
g | T
h |T
i T
] T
k | T
| T
m|T
n|T
o |T
p | T
q T
r | T
s | T
t | T

The role of induction in a proof is analogous to the role of recursion in an algorithm.




3. (20 points) Suppose you are given a binary search tree class.

public class BST<T extends Comparable<T>> {

T nodeValue; // Value for this node
BST<T> left; // Left child, or null if none
BST<T> right; // Right child, or null if none

. usual code for methods Add and Lookup ..

a) (10 points) Write a new method public int size() that is called on a BST node, and counts the number
of nodes in the subtree rooted at “this”. Don’t add extra class variables, but you can use additional
helper methods, or local variables, as needed. Example: if size is called on a leaf, it returns 1; if called on
the root of a tree, size returns the number of nodes in the entire tree.



b) (10 points) Write a method public List<T> toList()that is called on a BST node, and returns a list of
node values for the subtree rooted at “this”, in sorted order. Again, don’t add class variables, but helper
methods and local variables are fine. Hint: It is not necessary to implement a sorting algorithm!



4. (25 points) Here’s a map for part of the Paris subway system. Assume that the full map is
represented as a directed graph and that each edge is labeled by how long the train takes. For
example, Concorde-Invalides normally takes 2min 10secs.

a) (10 points) In class we learned about Dijkstra’s shortest path algorithm. Suppose that you were
designing the computer program to recommend routes. The program knows where the user is currently
located (the station where he/she is posing the question), and where that person wants to go. How
could you apply Dijkstra’s algorithm to solve this problem? How does that algorithm work, and why
does it solve our problem? Make sure to tell us how we would obtain the actual route to follow!



b) (15 points) Our map (and hence our graph) lacks any
information about the time needed to switch trains. Suppose we
are given a correspondence delays table, as shown to the right.
Describe a simple way of modifying the graph representing the

Station

From

To

Avg delay

Champs Elysées Yellow Blue 12 mins
Champs Elysées Blue Yellow 9 mins
Concorde Yelllow | Pink 7 mins

... etc

metro map, that lets us continue to use the same algorithm as in (a) but will now take correspondence
delays into account. Hint: your solution will add some extra nodes and some extra edges. Make sure to
tell us which nodes to add and which edges to add and what weight to put on the edges. Notice that the
table isn’t “symmetric” (this is because trains are more frequent on some lines).




5. (10 points) You developed your genome phylogeny application as a single-threaded application, even
though you own a 4-core computer. It needed 10 minutes to compute a Phylogeny graph.

Using a debugging tool you discover that the program is spending 8 minutes just reading the data files.
The number of files is the same as in ¢s2110 (40), but the files themselves are much, much larger: the
DNA contains billions of codons. In contrast, DNA in our ¢s2110 files had about 50,000 codons.

To fully leverage your computer, you decide to use threads:

1. The main thread first creates 40 threads, one for each Animal.

These threads read the Animal data files in parallel; the main thread waits for them to finish.

3. As each thread reads the file, it parses the animal's DNA, storing each parsed gene into a
TreeSet<Gene> collection. This TreeSet is shared, hence the threads use synchronize when
accessing it.

4. When finished, the Animal-file-reader threads terminate and the main thread then resumes and
finishes the computation.

~

Your code only uses synchronization statements for step 3, and has no bugs or race conditions.

You were hoping to see the 8 minutes drop to 2, and hence for your whole program to run in about 4
minutes. However, it actually runs a little slower with threads than it originally did without them!

a) (5 points). Your kid brother comments out all the synchronize() statements and now your program
finishes quite a bit faster than the original 8 minutes. What does this tell you about why it was running
so slowly? Was your brother’s idea a good one? Note: zero credit for “Yes” or “No” as an answer. We
want to know why!



b) (5 points). Now we want you to generalize what you told us in part (a). In general, suppose that two
concurrently active threads both execute synchronize(something) { ... }. Describe some conditions under
which the synchronize statement can safely be removed.

c) (5 points). Now take (a) and (b) into account and tell, briefly, how to modify the solution so that it
would actually speed up from multi-core parallelism. Hint: for full credit, your proposal won’t change
the number of threads but will instead focus on the problem causing the slowdown.

10



