Danaus Manual

nono? REAL HEY. REAL WELL, REAL | | NO, REAL | |REAL PROGRAMHERS EXCUSE ME, BUT

PROGRAMMERS PROGRAMMERS | | PROGRAMMERS | | PROGRAMMERS | | USE A MAGNETIZED REAL PROGRAMMERS

USE emocs USE vim. VSE ed. USE cot. | | NEEDLE AND A USE BUTTERFLIES.

'\ } l j STEADY HAND. ‘\I
f
THE DISTURBANCE RIPFLES — WHICH AT AS [ENSES THAT NICE.
THEYOPEN THEIR OUTWARD, CHANGING THE FLOVW DEFLECT INCOMING COSMIC COURSE, THERE'S AN EMACS
ND LET THE \

HANDS A OF THE EDDY CURRENTS ReYS, FOCUSING THEM TO COMMAND TO DO THAT.
DELICATE WINGS FLAP ONCE. STRIKE THE DRIVE PLATTER '

ui

IN THE UPPER ATMOSPHERL.

THESE CAUSE MOMENTARY POCKETS
OF HIGHER-PRESSURE. AIRTO FORM,

Figure 1: Evidence you are all real programmers.

AND FLIP THE DESIRED BIT.

OH YEAH! GOOD (L'
Cx e Mrbotterfly...

RRRRY/

DAIAIT, EMACS.

Contents

1 Overview
1.1 Course OVEIVIEW o v v o e e e et e e e e e e e e e e e e e e e e

1.2 Danaus OVeIVIEW v i et e et e e e e e e e e e e

2 Simulation Basics
2.1 Parks,Maps,andTiles e
2.2 Butterflies e
2.3 POWET . . . o
24 DIrection e e e e e e e
2.5 Speed e

3 Maps
3.1 TileTypes. o e
311 Land e e e e e
3.1.2 Forest e e e e e e e e e
3.1.3 Clff . . e e e
3. 1.4 Water e e e e e e e e e e
3.2 Connectivity oo i e
33 TileState e e e e e e
3.3.1 Location e e e e e e e e e e e
3.3.2 Light . .. e
333 Wind e e e
334 FIOWETS . . . o o o o e e e e e e e e e e
3.35 AIOMAS ot e e e e e e e e e e e e e e

4 Butterfly API
4.1 void fly(Direction heading, Speeds)
4.2 voidland() e e e e,
4.3 boolean collect(Flowerf) @ e
4.4 voidrefreshState(). e e e e
4.5 PowergetPower() e
4.6 intgetMapWidth()
4.7 intgetMapHeight()

5 Learning and Running
5.1 Learning e

52 Running e e

10
10
10
10

6 Command Line Options

7 Credits

11

12

1 Overview

1.1 Course Overview

Throughout the semester, you will be completing a large, multi-part programming assignment
in addition to several smaller, independent programming assignments.

The multi-part programming series, known colloquially as Danaus', will expose you to a
holistic, integrated form of object-oriented programming. For each assignment in the three
part series, you will be adding to the code you have previously written to solve new challenges.
Danaus will cover topics ranging from project design and object orientation to graph explo-
ration and traversal to machine learning.

The smaller independent assignments will tax your skills with the fine-grained details of ob-
ject oriented programming.

1.2 Danaus Overview

In a nutshell, Danaus is a butterfly flight simulation engine. We have provided a framework to
generate pseudo-random maps, animate butterflies, and assess their performance. You will be
designing and programming the logic behind the butterfly.

More specifically, yet with many details still elided, a simulation consists mainly of a map,
a butterfly, and some information on the state of the simulation. A map is a toroidal grid of
tiles. Each tile has a set of attributes: light, wind, etc. A butterfly is placed within a map and
can explore the map by flying and landing. The goal of the butterfly is to collect a set of flowers,
distributed randomly throughout the map, as quickly and as efficiently as possible. Throughout
the simulation, various performance metrics are recorded, such as total turns and time taken.

This document elaborates on the basics of a simulation, the attributes of a map, the func-
tionality of the butterfly AP], etc. It is imperative that you read and understand this document
in full before you begin to design and implement your butterfly.

2 Simulation Basics

This section provides an overview of Danaus’ basics to help you form a big-picture understand-
ing of Danaus. The basics discussed here are explained in greater detail in later sections.

2.1 Parks, Maps, and Tiles

Three important classes within Danaus are Tile, Map, and Park.

* Tiles, such as Land and Water, are the basic building blocks of Danaus. Butterflies travel
to and from Tiles; Aroma and Wind are spread about Tiles; etc.

IThe genus of a butterfly. Not to be confused with the Greek god of the same name.

http://en.wikipedia.org/wiki/Danaus_(genus)

* AMap consists of an array of Tiles and some other bookkeeping information. AButterfly
interfaces most heavily with a Map.

* A Park consists of a Map and some information about the state of a simulation. Butter-
flies do not directly interface with a Park, but a Park will record simulation statistics and
performance metrics of the Butterfly.

The hierarchical nature of Tiles, Maps, and Parks is illustrated in Figure 2.

Figure 2: The hierarchy of Danaus structures.

2.2 Butterflies

During a simulation, a butterfly both learns and runs on a map. When learning, a butterfly
exhaustively searches a map, collecting as much information about the map as possible. When
running, a butterfly collects a set of flowers in as few turns as possible.

2.3 Power

This feature has been removed.

2.4 Direction

Directions, of enum Direction, are the eight basic cardinal directions: N, NE, E, SE, S, SW, W,
and NW. Each direction corresponds to one of a tile’s eight neighbors, as shown in Table 1.

NW| N | NE

w E

SW| § | SE

Table 1: The relationship between cardinal directions and tile neighbors.

2.5 Speed

This feature has been removed.

3 Maps

3.1 Tile Types

A map is a toroidal grid of Tiles, each of which can be one of four subclasses.

Land

Land, the most basic type of Tile, is flat and flyable.

3.1.2 Forest

The tall and dense trees of a Forest tile are flyable.

3.1.3 CIiff

A Cliff is towering and unflyable. When a butterfly tries to fly over a Cliff, a
CliffCollisionException is thrown, and the butterfly’s location does not change.

o =
o

3.1.4 Water

Water is treacherous and unflyable. When a butterfly tries to fly over Water, a
WaterCollisionException is thrown, and the butterfly’s location does not change.

3.2 Connectivity

All maps are guaranteed to be connected. That is, there exists a path between all pairs of flyable
tiles. This implies that it is always possible for a butterfly to explore every flyable tile in a map.

3.3 Tile State

Each tile also has a unique set of characteristics, as defined in class TileState. Each Tile
contains a TileState instance. The following subsections explain the key fields of TileState.

3.3.1 Location

Each tile is identified by a [row, col] coordinate pair in an object of class Location. The
coordinate system of Locations is identical to the indexing system of Java arrays. The top left
Tileis [0,0]. Travel east and col increases. Travel south and row increases.

(0,01 |[0,1][0,2]
(1,0] | [1,1]][1,2]
(2,01 | [2,1]][2,2]

Table 2: A small map with annotated locations.

Though maps appear to be planar, they behave like a torus. Thus, a butterfly traveling off the
east border of a map appears on the west border. Similarly, a butterfly traveling off the north
border of a map appears on the south border. Figure 3 shows a toroidal Earth.

Figure 3: Toroidal Earth. Note that the Earth is not toroidal, and spheres cannot be arbitrarily
converted to toruses. This is an illustration of what the Earth would look like if it were a torus.

3.3.2 Light

This feature has been removed.

3.3.3 Wind

This feature has been removed.

3.3.4 Flowers

Each tile has zero or more flowers (of class Flower), which can be accessed via TileState’s
method getFlowers (). A flower has a unique long identifier, flowerId, and an initial aroma
intensity of 1 x 108, and each flower radiates its aroma about the map?. The aroma at a distance
d from a flower can be calculated as follows.

aromajnpitjal

aromag = 1+ d)?

Here, d is the shortest distance from a tile to a flower. For example, consider the 3 x 3 map with
a flower planted in the center as shown in Figure 3 and Figure 4.

1 1 1
1 0 1
1 1 1

Table 3: Distances from the center of the map.

250000 250000 250000

250000 | 1000000 | 250000

250000 250000 250000

Table 4: Sample spreading of aroma without obstacles or map wrapping.

Figure 4 shows aroma propagation on a simple map without obstacles or wrapping. However,
including these obstacles and wrapping does not complicate the propagation. The distance d
for each tile is still its shortest distance to the flower.

Flower Invariants

2Really, a flower will radiate its aroma only up to Integer.MAX VALUE steps away. We will never test you on maps
of such a size, so you can assume that it radiates its aroma to all Tiles.

1. Each instantiated flower is unique. Even if two flowers use the same image and occupy
the same tile, they are distinct. A corollary of this invariant is that no two Flowers are
equal as determined by Flower.equals().

2. Flowers may bloom (1) before learn is invoked or (2) after learn terminates and before
run is invoked. Once a flower blooms, it continues to bloom at the same location for the
duration of the simulation. Flowers that bloomed in learn are there during run.

3.3.5 Aromas

Each tile has zero or more aromas (of class Aroma), which can be accessed using TileState
method getAromas (). An aroma has an intensity (in public field intensity) and an associated
flowerId, a long that will match a Flower object, once that Flower is found.

Each aroma is associated with one specific flower. Aromas of different flowers are completely
independent and are completely separate instantiations of Aroma.

4 Butterfly API

In order to implement your butterfly, you must first create a subclass of AbstractButterfly
, which defines various public and protected methods that you use to control your butterfly.
For more information on the butterfly API, refer to the javadoc specifications of the fields and
methods.

4.1 void fly(Direction heading, Speed s)

Method fly attempts to fly your butterflyin Direction heading with Speed s. A butterfly can
attempt to fly to any of its neighboring tiles using any of the eight cardinal directions.

A flight attempt can fail for several reasons. First, if a butterfly attempts to fly into a Cliff
or over Water, an ObstacleCollisionException exception is thrown. The Location of the
Butterfly is unchanged.

4.2 voidland()

This feature has been removed.

4.3 boolean collect(Flower f)

During the run() phase, the goal of a butterfly is to collect a set of flowers. Method collect
attempts to collect Flower f in the tile the butterfly is currently on. If f is planted on the tile, it
is collected and true is returned; if f is not planted on the tile, false is returned.

4.4 void refreshState()

Every instance of a subclass of AbstractButterfly hasa TileState field named state. When
refreshStateis called, stateis updated with the TileState of the tile the butterfly is currently
on.

Note that if a butterfly flies to a tile, the butterfly’s state is not automatically updated. For ex-
ample, state. location will contain the wrong information. Itis up to you to call refreshState
() if you want access to the current tile’s TileState.

4.5 Power getPower()

This feature has been removed.

4.6 int getMapWidth()

Method getMapWidth returns the number of columns of the map the butterfly is on.

4.7 int getMapHeight()

Method getMapHeight returns the number of rows of the map the butterfly is on.

5 Learning and Running

Danaus simulations have two phases: learning and running. AbstractButterfly declares
these phases as two methods: TileState[][] learn() and void run(List<long> flowerIds
). When Danaus is started, it sets up the required infrastructure to execute a simulation. Once
this is complete, it calls your method learn(). After some computation and map modifica-
tions, it call method run(). The details of these two methods and the flow of a simulation are
provided below.

5.1 Learning

Before learn() is invoked, Danaus sets up the appropriate framework. First, it parses argu-
ments to method main. It decides whether to instantiate a GUI. It randomly generates a map or
parses a map from a map file. It instantiates an instance of your butterfly and places it on the
map. It invokes your implementation of learn().

The purpose of learn() is for a butterfly to explore and save the flyable tiles of a map. It
does so by generating and returning a two-dimensional array of TileStates, whose flyable tiles
must match the map’s TileStates. Danaus then determines how well the map and the returned
array match. TileStates do not have to be provided for Cliff or Water tiles. Any TileState,
or null, can be provided and will be counted as a correct.

10

During the learning phase of a simulation, you should not and cannot collect flowers. An
attempt to collect a flower during learn () will throw a PrematureCollectionException, and
no flower will be collected.

Instead, focus on collecting the required information about the map as efficiently as possible.
You are required to return a two-dimensional array of TileStates that contains the information
in all flyable states of the map. It is up to you to determine how to explore the map to do this.

5.2 Running

After the learn() phase, Danaus shifts to the running phase of the simulation. First, Danaus
randomly adds more flowers to the map and spreads their aromas. (Other than the new flowers
and aromas, the map does not change. The location of the butterfly and all the information it
has saved up to this point is also maintained.)

Next, Danaus randomly generates a list of flower id’s and passes this list to your method run
(). The list may contain some flower id’s belonging to flowers that were initially on the map as
well as flowers that were added after learn() terminated. The goal is to collect the associated
flowers as efficiently as possible — the order in which they are collected does not matter.

Before having the butterfly fly around and collect flowers, your method run () should use the
two-dimensional TileState array that was constructed during the learn () phase to figure out
how to fly around and collect flowers as efficiently as possible. There are many ways to do this.
Coding a correct, readable, well-documented, and efficient butterfly during the run phaseis the
core challenge and fun of Danaus.

Once run terminates, Danaus checks the collected flowers against the list of flowers given
to run. If your butterfly collected every flower (and only those) in any order, you successfully
complete the simulation.

6 Command Line Options

Danaus has various command-line options that affect execution of a simulation, and you may
want to alter the execution by providing some of them. Most students will be running using
Eclipse, and we now explain how to give command-line arguments in Eclipse.

With the Danaus project selected in the Package Explorer, click “Run” at the top of the screen.
Then, click “Run Configurations”. A windowed menu pops up. You see a tab titled “Arguments”
near the top of the screen next to the “Main” and “JRE” tabs. Click on the “Arguments” tab. The
topmost text box is titled “Program arguments:”. This is where you enter your command line
options.

Here is a list of the options Danaus provides. Arguments can appear in any order. Text in
bold should be entered literally. While italicized text should be replaced with the appropriate
arguments.

e --help
Print a friendly help message and exit the program.

11

e -h, --headless
Run Danaus without a GUI.

e -d, --debug
Danaus keeps track of various debugging information. When this option is provided, the
debugging information is printed to the screen.

* -w, --warning
Danaus keeps track of various warning information. When this option is provided, the
warning information is printed to the screen.

e =i, --infinite
This feature has been removed.

* -5, --seed <seed>
Danaus uses a single psuedo-random number generator to generate its randomness. A
psuedo-random number generator creates a string of apparently random numbers from
an initial seed. If you specify a seed, Danaus repeatedly produces the “random” map
generated from that seed.

e -f, --file <mapfile>
If amap file is provided, Danaus generates the map from the map file instead of randomly
generating the map.

In addition to these command-line options, you can also provide command-line arguments.
Unlike options, arguments do not require a “-” or “- -".

The only command line arguments Danaus accepts are the names of the butterfly classes you
want to run the simulation with. For example, if CornellButterflyisasubclass of AbstractButterfly
, you can run Danaus as follows:

java danaus.Simulator student.CornellButterfly

Or, if running Danaus from Eclipse, simply put “CornellButterfly” in the “Program argu-
ments:” tab, as described above. If several class names are provided, the first class is used. If no
class names are provided, the name “Butterfly” is used by default.

For more information on Danaus’ command line options, refer to Danaus’ man page located
in /doc/man. For more information on man pages or if you are having trouble using the Danaus
command-line options, refer to Google, Piazza, or ask a professor, TA, consultant, or friend.

7 Credits

Many thanks to all those who contributed to the creation of Danaus and allowed us to use their
work. Without them, Danaus would not be as complete or as elegant as it is with their contri-
butions.

* Flower sprites were taken from neorice.

 Butterfly sprites were taken from David Nyari.

12

http://neoriceisgood.deviantart.com/art/100-Flower-Sprites-348880673
http://toadstone.tumblr.com/

	Overview
	Course Overview
	Danaus Overview

	Simulation Basics
	Parks, Maps, and Tiles
	Butterflies
	Power
	Direction
	Speed

	Maps
	Tile Types
	Land
	Forest
	Cliff
	Water

	Connectivity
	Tile State
	Location
	Light
	Wind
	Flowers
	Aromas

	Butterfly API
	void fly(Direction heading, Speed s)
	void land()
	boolean collect(Flower f)
	void refreshState()
	Power getPower()
	int getMapWidth()
	int getMapHeight()

	Learning and Running
	Learning
	Running

	Command Line Options
	Credits

