Two parts: Notes on A6

learn(): Do a depth-first search of the whole graph, saving
the state of each flyable tile. Relatively easy

Run(List<Long> idList): 1dList 1s a list of some of the
flowers on the map. Some grew before learn() was called.
Others grew after learn() was called; they are hard to find.

Purpose of run(). Have the Bfly fly around the map and
collect the flowers who Flowerld 1s in 1dList.
Much harder, requiring more thought and design

Finish learn() VERY SOON. Make sure it is correct.

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void dfs(int u) {
visited[u]= true;
for each edge (u, v)
if v 1s unvisited then dfs(v);

TRANSLATE THIS TO THE BFLY ENVIRONMENT

TileState[][] ts; node u —2> ts[r][c]

0. The BFly does not necessarily start out on tile [0][0]!

1. A6 has wraparound!

E.g. East of tile ts[5][getMapWidth()-1] is tile ts[5][0].

Any index-expression must be calculated mod the width or
height of the map.

Look in class Common for an existing mod function.

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void dfs(int u) {
visited[u]= true;
for each edge (u, v)
if v 1s unvisited then dfs(v);

TRANSLATE THIS TO THE BFLY ENVIRONMENT

TileState[][] ts; node u —2> ts[r][c]

2. General aim: Simplicity. As little case analysis as possible. Little
duplication. Not too much loop nesting —use more methods

We urge you to write good, complete, precise method specs
before writing the bodies. Reason: it allows YOU to write calls on
methods without having to read method bodies. It makes
programming some of the more complicated things easier.

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void dfs(int u) {
visited[u]= true;
for each edge (u, v)
if v 1s unvisited then dfs(v);

)
TRANSLATE THIS TO THE BFLY ENVIRONMENT
TileState[][] ts; node u —2> ts[r][c]
3. Urge you to make: visited[u] = ts[r][c] = null

To make run() easier later on, store an object in a cliff or water
tile when encountered. See static variables in class TileState

4. Does the BFly DFS procedure need parameter u, or can it be
given by the Bfly’s current tile? Think about this, remove
parameter if unnecessary.

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void dfs(int u) {
visited[u]= true;
for each edge (u, v)
if v 1s unvisited then dfs(v);

TRANSLATE THIS TO THE BFLY ENVIRONMENT

TileState[][] ts; node u —2> ts[r][c]

5. Public static void dfs() {...}
Where should the Bfly end up after completing the dfs? Think
carefully about that and put it into the specification.

/** Node u is unvisited. Visit all nodes REACHABLE from u. */
public static void dfs(int u) {
visited[u]= true;
for each edge (u, v)
if v 1s unvisited then dfs(v);

)

TRANSLATE THIS TO THE BFLY ENVIRONMENT
6. The Bfly can fly in 8 possible directions. N
Study class Directions! N t N

we— @ — ¢
7. How to translate for each edge (u, v) {...} v l \
. SW SE
Into a simple statement s

for (type variable : expression) {...}

that sequences through the 8 Directions?

/** Collect the flowers whose Flowerlds are 1n list fList.
Don’t collect any other flowers. Bfly must visit fewer nodes
than 1t did during learn() */

public void run(List<Long> fList)

fList: (3, 6, 10, 11, 12, 30, 40, 41)

Some flowers were there ~ Some flowers were planted after

during learn. You can find learn. You can’t find one in the
which tile they are on simply states of ts[][] until you fly to the
by searching through ts[][] tile it 1s on and refresh
(but to collect a flower, you
have to fly to the tile it 1s on) Use flower aromas to find

direction to fly to for a flower.

/** Collect the flowers whose Flowerlds are in list fList.
Don’t collect any other flowers. Bfly must visit fewer nodes

than 1t did during learn() */
public void run(List<Long> fList)

flist: (3, 6, 10, 11, 12, 30, 40, 41)

flower aroma on a tile spreads —further away, less intense.
You have to use the aroma to find the tile with the flower:
to fly one step closer to the flower, fly to a tile where its

aroma is higher.

To find a tile’s intensity, the Bfly must be on the tile.

25

25

25

12

25

100

25

12

25

25

25

12

12

12

12

12

Bfly’s state contains: An aroma contains:
List<aroma> Field intensity
List<Flower> Function getFlower()

/** Collect the flowers whose Flowerlds are in list fList.

Don’t collect any other flowers. Bfly must visit fewer nodes
than 1t did during learn() */

. . 25| 25 | 25
public void run(List<Long> fList)

25 [100| 25

fList: (3, 6, 10, 11, 12, 30, 40, 41) 5c | 25 | 25

Different strategies. Here are two examples, both using shortest path and
a method M that flies to a tile using a flower aroma.

1. Do shortest path algorithm. Then find all old flowers using its shortest path

and new flowers using M. To use shortest path, requires always returning to
starting point.

2. Do shortest path algorithm. Then find all old flowers using its shortest path

and new flowers using M. To use shortest path, requires always returning to
starting point.

Can you find strategies that don’t always require going back to initial
node —perhaps using shortest path algorithm more than once? But
change it so it doesn’t compute everything

