
1	

1	

CS2110 Spring 2014. Concluding Lecture:	

History, Correctness Issues, Summary	

Final review session: Fri, 9 May. 1:00–3:00. Phillips 101. 	

	

Final: 7:00–9:30PM, Monday, 12 May, Barton Hall 	

	

We hope to get you tentative course grades by
Wednesday noon, but it may be later. You then visit the
CMS and do the assignment to tell us whether you accept
the grade or will take the final. There will be a message
on the Piazza and the CMS about this when the tentative
course grades are available.	

2	

CS2110 Spring 2014. Concluding Lecture:	

History, Correctness Issues, Summary	

Programming and computers:	

Momentous changes since the 1940s –or since even the use
of punch cards and attempt at automation …	

3	

Punch cards	

	

	

Mechanical loom invented by Joseph Marie Jacquard in 1801.
Used the holes punched in pasteboard punch cards to control
the weaving of patterns in fabric.
Punch card corresponds to one row of the design.
Based on earlier invention by French mechanic Falcon in 1728.

Jacquard loom

Loom still
used in China	

4	

Charles Babbage designed a “difference engine” in 1822!

Compute mathematical tables for log, sin, cos,
other trigonometric functions.	

The mathematicians doing the
calculations were called

computers	

No electricity	

5	

Oxford English Dictionary, 1971!

Computer: one who computes; a calculator, rekoner. spec. a
person employed to make calculations in an observatory, in
surveying. etc.	

1664: Sir T. Browne. The calendars of these computers.	

1704. T. Swift. A very skillful computer.	

1744. Walpole. Told by some nice computers of national
glory.	

1855. Brewster Newton. To pay the expenses of a computer
for reducing his observations.	

The mathematicians doing the
calculations were called

computers	

 6	

Charles Babbage planned to use cards to store programs
in his Analytical engine. (First designs of real computers,
middle 1800s until his death in 1871.)!

First programmer was Ada
Lovelace, daughter of poet
Lord Byron.!
!
Privately schooled in math.!
One tutor was Augustus De
Morgan.!
!
The Right Honourable
Augusta Ada, Countess of
Lovelace.!

2	

7	

Herman Hollerith.
His tabulating machines used in compiling the
1890 Census.
Hollerith's patents were acquired by the
Computing-Tabulating-Recording Co.
Later became IBM.

The operator places
each card in the
reader, pulls down a
lever, and removes
the card after each
punched hole is
counted.

Hollerith 1890 Census Tabulator	

8	

Computers, calculating the US census	

9	

9	

1935-38. Konrad Zuse - Z1 Computer 	

1935-39. John Atanasoff and Berry (grad student). Iowa State	

1944. Howard Aiken & Grace Hopper Harvard Mark I
Computer	

1946. John Presper Eckert & John W. Mauchly ENIAC 1
Computer 20,000 vacuum tubes later ...	

1947-48 The Transistor, at Bell-labs.	

1953. IBM. the IBM 701.	

History of computers	

10	

10	

How did Gries get into Computer Science?	

1959. Took his only computer course. Senior, Queens College.	

1960. Mathematician-programmer at the US Naval Weapons Lab
in Dahlgren, Virginia.	

	

11	

11	

1960. Mathematician-programmer at the US Naval Weapons Lab
in Dahlgren, Virginia.	

 CLI SEX,'M' Male?	

 BNO IS_FEM If not, branch around	

 L 7,MALES Load MALES into register 7;	

 LA 7,1(,7) add 1;	

 ST 7,MALES and store the result	

 B GO_ON Finished with this portion	

IS_FEM L 7,FEMALES If not male, load FEMALES into register 7;	

 LA 7,1(,7) add 1;	

 ST 7,FEMALES and store	

GO_ON EQU *	

if (SEX == ‘M’) MALES= MALES + 1; 	

���
else FEMALES= FEMALES + 1;	

Programmed in Fortran and IBM 7090 assembly language	

12	

12	

1960: Big Year for Programming Languages	

LISP (List Processor): McCarthy, MIT (moved to Stanford). First
functional programming language. No assignment statement. Write
everything as recursive functions.	

COBOL (Common Business-Oriented Language). Became most
widely used language for business, data processing.	

ALGOL (Algorithmic Language). Developed by an international
team over a 3-year period. McCarthy was on it, John Backus was
on it (developed Fortran in mid 1950’s). Gries’s soon-to-be PhD
supervisor, Fritz Bauer of Munich, led the team. 	

	

3	

13	

13	

1959. Took his only computer course. Senior, Queens College.	

1960. Mathematician-programmer at the US Naval Weapons Lab in
Dahlgren, Virginia.	

1962. Back to grad school, in Math, at University of Illinois	

Graduate Assistantship: Help two Germans write the ALCOR-
Illinois 7090 Compiler.	

	

John Backus, FORTRAN, mid 1950’s: 30 people years	

	

This compiler: 6 ~people-years	

	

Today, CS compiler writing course: 2 students, one semester	

	

	

	

1963-66 Dr. rer. nat. in Math in Munich Institute of Technology	

1966-69 Asst. Professor, Stanford CS	

1969- Cornell!	

14	

Late 1960s	

 IBM 360	

Mainframes	

Write programs on IBM “punch
cards. Deck of cards making up
a program trucked to Langmuir
labs by the airport 2-3 times a
day; get them back, with output,
3-4 hours later	

15	

About 1973. BIG STEP FORWARD	

1. Write program on punch cards.	

2. Wait in line (20 min) to put cards in
card reader in Upson basement	

3. Output comes back in 5 minutes	

 November 1981,	

 Terak with 56K ���

 RAM, one floppy���
 drive: $8,935.	

	

Want 10MB hard drive?	

$8,000 more	

About 1979. Teraks	

Prof. Tim Teitelbaum ���
sees opportunity. He���
and grad student Tom���
Reps develop “Cornell Program
Synthesizer”. Year later,
Cornell uses Teraks in its prog
course.	

40 lbs	

About 1973. BIG
STEP FORWARD	

Switched to using���
the programming
language Pascal,
developed by Niklaus
Wirth at Stanford.	

16	

1983-84	

Switched to
Macintosh in labs	

1980s	

CS began getting
computers on their
desks. 	

Late 1980s	

Put fifth floor addition on Upson.
We made the case that our labs
were in our office and therefore
we need bigger offices.	

Nowadays	

Everybody has a computer in their
office.	

2014	

Moved into Gates Hall!	

17	

Programming languages. Dates approximate	

Year 	

Major languages 	

 	

Teach at Cornell	

1956’s Fortran	

1960 	

 Algol, LISP, COBOL	

1965  PL/I 	

 	

 	

 	

 PL/C (1969)	

1970 	

 C	

1972  Pascal	

	

1980’s	

 Smalltalk (object-oriented) Pascal (1980’s)	

1980’s (late) C++	

1996  Java 	

 	

 	

 	

C and C++	

1998 	

	

 	

 	

 	

 	

Java / Matlab	

The NATO Software Engineering Conferences	

homepages.cs.ncl.ac.uk/brian.randell/NATO/	

	

 7-11 Oct 1968, Garmisch, Germany 	

27-31 Oct 1969, Rome, Italy	

	

Download Proceedings, which	

have transcripts of discussions.	

See photographs.	

Software crisis:	

Academic and industrial people.
Admitted for first time that they did
not know how to develop software
efficiently and effectively.	

4	

19	

Next 10-15 years: intense period of research on software
engineering, language design, proving programs correct, etc.	

Software
Engineering,

1968	

20	

Software Engineering, 1968	

During 1970s, 1980s, intense research on ���
How to prove programs correct,���
How to make it practical, ���
Methodology for developing���
algorithms	

21	

The way we understand
recursive methods is based on
that methodology.	

Our understanding of and
development of loops is based
on that methodology.	

Throughout, we try to give
you thought habits and
strategies to help you solve
programming problems for
effectively, e.g.	

Write good method specs.	

Keep methods short.	

Use method calls to eliminate
nested loops.	

Put local variable declarations
near first use.	

Mark Twain: Nothing needs changing
so much as the habits of others.	

22	

The way we understand
recursive methods is based on
that methodology.	

Our understanding of and
development of loops is based
on that methodology.	

Throughout, we try to give
you thought habits to help
you solve programming
problems for effectively	

Simplicity is key:	

Learn not only to simplify,	

learn not to complify.	

Separate concerns, and
focus on one at a time.	

Don’t solve a problem
until you know what the
problem is (give precise
and thorough specs).	

Develop and test
incrementally.	

Learn to read a program at
different levels of
abstraction.	

Use methods and method
calls so that you don’t
have nested loops	

23	

Simplicity and beauty: keys to success	

CS professor's non-dilemma	

I do so want students to see	

 beauty and simplicity.	

A language used just has to be	

 one only with that property.	

Therefore, and most reasonably,	

 I will not and do not teach C.	

	

 David Gries	

CS has its field of
computational complexity.
Mine is computational
simplicity,	

	

David Gries	

Inside every large program is a
little program just trying to
come out. Tony Hoare	

Beauty is our Business.	

Edsger Dijkstra	

Admonition 	

a little Grook	

In correctness concerns	

 one must be immersed.	

To use only testing	

 is simply accursed.	

Correctness of programs, the ���
teaching of programming	

24	

Edsger W. Dijkstra Sir Tony Hoare

simplicity 	

elegance 	

perfection 	

intellectual honesty	

Dijkstra: The competent programmer is fully aware of the
limited size of his own skull, so he approaches the
programming task in full humility, and among other things, he
avoids clever tricks like the plague.	

	

Hoare: Two ways to write a program: 	

(1) Make it so simple that there are obviously no errors.	

(2) Make it so complicated that there are no obvious errors.	

Edsger W. Dijkstra Sir Tony Hoare	

5	

Axiomatic Basis for Computer Programming.���
Tony Hoare, 1969	

25	

Provide a definition of programming language statements
not in terms of how they are executed but in terms of
proving them correct.	

{precondition P}	

Statement S	

{Postcondition Q)	

	

Meaning: If P is true, then execution of S is guaranteed to
terminate and with Q true	

Assignment statement x= e;	

26	

{true}	

x= 5;	

{x = 5}	

{x+1 >= 0}	

x= x + 1;	

{x >= 0}	

{2*x = 82}	

x= 2*x;	

{x = 82}	

Definition of notation: 	

P[x:= e] (read P with x replaced by e) stands for a copy of
expression P in which each occurrence of x is replaced by e	

Example: (x >= 0)[x:= x+1] = x+1 >= 0	

Definition of the assignment statement: 	

{P[x:= e]}	

x= e;	

{P}	

Assignment statement x= e;	

27	

{x+1 >= 0}	

x= x + 1;	

{x >= 0}	

{2*x = 82}	

x= 2*x;	

{x = 82}	

Definition of the assignment statement: 	

{P[x:= e]}	

x= e;	

{P}	

{ }	

x= 2.0*x*y + z;	

{x = x/6}	

x = x/6	

	

2.0xy + z = (2.0xy + z)/6 	

2.0xy + z = (2.0xy + z)/6 	

If statement defined as an “inference rule”:	

28	

Definition of if statement: If	

	

	

	

Then	

 {P}	

 if (B) ST	

 else SF	

 {Q}	

 {P && B} ST {Q} and	

 {P && !B} SF {Q}	

The then-part, ST, must end with Q true	

The else-part, SF, must end with Q true	

Hoare’s contribution 1969:���
Axiomatic basis: Definition of a language in terms of how to
prove a program correct.���
But it is difficult to prove a program correct after the fact.
How do we develop a program and its proof hand-in-hand?	

29	

Dijkstra showed us how to do that in 1975. 	

His definition, called “weakest preconditions” is defined in
such a way that it allows us to “calculate” a program and its
proof of correctness hand-in-hand, with the proof idea
leading the way.	

Dijkstra: A Discipline of Programming. Prentice Hall, 1976. 	

A research monograph	

	

Gries: The Science of Programming. Springer Verlag, 1981.	

Undergraduate text. 	

How to prove concurrent programs correct.���
Use the principle of non-interference	

30	

Thread T1	

{P0}	

S1;	

{P1}	

S2;	

{P2}	

…	

Sn;	

{Pn}	

	

Thread T2	

{Q0}	

Z1;	

{Q1}	

Z2;	

{Q2}	

…	

Zm;	

{Qm}	

	

We have a proof that	

T1 works in
isolation and a proof
that T2 works in
isolation. 	

But what happens
when T1 and T2
execute
simultaneously,
operating on the
same variables?	

6	

How to prove
concurrent programs
correct.���
	

31	

Thread T1	

{P0}	

S1;	

{P1}	

S2;	

{P2}	

…	

Sn;	

{Pn}	

	

Thread T2	

{Q0}	

Z1;	

{Q1}	

Z2;	

{Q2}	

…	

Zm;	

{Qm}	

	

Prove that execution of T1 does not interfere with the proof of
T2, and vice versa.	

Basic notion: Execution of Si does not falsify an assertion in T2:	

e.g. {Pi && Q1} S2 {Z2}	

Turn what previously
seemed to be an
exponential problem,
looking at all executions,
into a problem of size
n*m.	

Interference freedom.
Susan Owicki’s Cornell
thesis, under Gries, in
1975.	

32	

Thread T1	

{P0}	

S1;	

{P1}	

S2;	

{P2}	

…	

Sn;	

{Pn}	

	

Thread T2	

{Q0}	

Z1;	

{Q1}	

Z2;	

{Q2}	

…	

Zm;	

{Qm}	

	

Prove that execution of T1 does not interfere with the proof of
T2, and vice versa.	

Basic notion: Execution of Si does not falsify an assertion in T2:	

e.g. {Pi && Q1} S2 {Z2}	

A lot of progress since
then! But still, there are a
lot of hard issues to solve
in proving concurrent
programs correct in a
practical manner.	

