THREADS AND
CONCURRENCY

Graphs summary

o Dijkstra: given a vertex v, finds shortest path from v

to x for each vertex x in the graph
Key idea: maintain a 5-part invariant on three sets

1. Vertices already visited (“settled”). Distance known
2. Frontier nodes. One hop from the settled ones
3. Future nodes. > one hop from the settled ones

0 Algorithm: move the “closest” frontier node to
settled, then adjust frontier and future sets to
restore the invariant.

Today: Start a new topic

0 Modern computers have “multiple cores”
Instead of a single CPU on the chip
5-10 common. Intel has prototypes with 80!

0 And even with a single core your program may
have more than one thing “to do” at a time

Argues for having a way to do many things at once

o Finally, we often run many programs all at once

4/30/14

Prelim 2

o 5:30 pm, Mallot 228 (even ids)
0 7:30pm, Kennedy Call Aud (odd ids)

11 Those who need extra time should start at the 5:30
slot, and move into Kennedy Hall for the rest of
their time when the 5:30 test ends.

o Those who need a quiet space should go directly to
the small room Kennedy (it is 101) at 5:302

Graphs summary

0 Minimum spanning tree: a tree that reaches every
node while minimizing the summed weight of edges
Prim’ s algorithm: repeatedly pick the lowest-weight
edge that will connect some previously disconnected
components. A “greedy” algorithm.
Kruskal” s algorithm: start with the whole graph,
repeatedly remove the highest-weight edge that won’ t
disconnect the spanning tree. Also “greedy”.
0 In all three cases, correctness is established using
inductive proofs that focus on maintaining invarients!

Why Multicore?

Moore’s Law: Computer speeds and memory densities

nearly double each year
Transistors
Per Die

1010
1965 Actual Data

10°1 m MOS Arrays A MOS Logic 1975 Actual Data
1975 Projection
Memory

26
256M 512M1G
Itanium™
Pentium® 4
Pentium® Il

A Microprocessor " Pentium® Il
256K 7 Pentium’
41 i386™
0286
KB g

'8 080
4004

L
1960 1965 1970 1975 1980 1985 1990/ 1995 2000 2005 2010

But a fast computer runs hot

Power dissipation rises as the square of the CPU
clock rate

Chips were heading towards melting down!

Multicore: with four

CPUs (cores) on one chip,
even if we run each at half
speed we get more overall
performance!

4/30/14

Keeping those i T eC]

Flo Optors Vew ShutDown teb

Appicatons | Processes | pef Netwrking | Users

cores busy

Sesson 1D | CPU | pem Ussge

* The operating system provides
support for multiple “processes”

* In reality there there may be fewer
processors than processes

* Processes are an illusion — at the
hardware level, lots of multitasking

—memory subsystem
—video controller
—buses

—instruction prefetching

» Virtualization can even let one
machine create the illusion of many
machines (they share disks, etc)

Systen
Sytemdeprocess SYTEM

[7]show processes from al users End Process.

Processes: 37 CPUUsage: 2% Commit Charger 3590 124500

What is a Thread?

A separate “execution ” that runs within a single
program and can perform a computational task
independently and concurrently with other threads

Many applications do their work in just a single
thread: the one that called main() at startup
But there may still be extra threads...
... Garbage collection runs in a “background” thread
GUIs have a separate thread that listens for events and

“dispatches” upcalls

Today: learn to create new threads of our own

What is a Thread?

A thread is a kind of object that “independently
computes”
Needs to be created, like any object
Then “started”. This causes some method (like main())
to be invoked. It runs side by side with other thread in
the same program and they see the same global data
The actual execution could occur on distinct CPU
cores, but doesn’ t need to
We can also simulate threads by multiplexing a smaller
number of cores over a larger number of threads

Concurrency

Concurrency refers to a single program in which
several threads are running simultaneously

Special problems arise

They see the same data and hence can interfere with

each other, e.g. if one thread is modifying a complex

structure like a heap while another is trying to read it
In cs2110 we focus on two main issues:

Race conditions

Deadlock

Thread class in Java

Threads are instances of the class Thread

Can create many, but they do consume space & time
The Java Virtual Machine created the thread that
executes your main method.
Threads have a priority

Higher priority threads are executed preferentially

A newly created Thread has initial priority equal to the
thread that created it (but can change)

Creating a new Thread (Method 1)

class PrimeThread extends Thread {
long a, b;

PrimeThread(long a, long b) {
this.a = a; this.b = b;

overrides
Thread.run ()
public void run()

//compute primes

i
1

no new thread is used:
the calling thread will run it

PrimeThread p = new

then call start() ,
Java invokes run () in new thread

... but if you create a new object and

If you were to call run () directly

4/30/14

Creating a new Thread (Method 2)

class PrimeRun implements Runnable {
long a, b;

PrimeRun(long a, long b) {
this.a = a; this.b = b;

}

public void run() {
//compute primes between a and b

i
1

PrimeRun p = new PrimeRun (143, 195);
new Thread(p) .start();

public void run() { E S
currentThread() .setPriority (6) ; Ehzead [ainsolnain]le
for (int i = 0; i < 10; i++) { e, Bryial] 7

System. out. format ("¢s %d\n", Ehreadlmain s malalio
Thread.currentThread(), i); Zhcead naiohSonaiolits

Exqmp|e Thread[Thread-0,5,main] 0
Thread[main,5,main] 0
Thread[main,5,main] 1
Thread[main,5,main] 2
Thread[main,5,main] 3
public class ThreadTest extends Thread { Thread[main, S, main] 4
Thread[main,5,main] 5
public static void main(String[] args) { | |Ipread[main,5,main] 6
new ThreadTest () .start(); Byl
for (int i = 0; i < 10; i++) { Thread[main,5,main] 8
System.out. format ("$s %d\n", Thread[main,5,main] 9
Thread.currentThread(), i); Thread[Thread-0,5,main] 1
) Thread[Thread-0,5,main] 2
) Thread[Thread-0,5,main] 3
Thread[Thread-0,5,main] 4
public void run() { Thread[Thread-0,5,main] 5
for (int & = 0; 1 < 10; i+4) { Thread[Thread-0,5,main] 6
system, out, format ("5 $d\n" , Thread[Thread-0,5,main] 7
Thread.currentThread(), i); Thread[Thread—O,S,ma?n] 8
] Thread[Thread-0,5,main] 9
}
Exqmple Thread[main,5,main] 0
Thread[main,5,main] 1
Thread[main,5,main] 2
Thread[main,5,main] 3
Thread[main,5,main] 4
public class ThreadTest extends Thread { Thread[main,5,main] 5
Thread[Thread-0,6,main] 0
public static void main(String[] args) { | |IPread[Thread-0,6, main] 1
new ThreadTest () .start(); Thread[Thread-0,6,main] 2
for (int i = 0; i < 10; i++) { Thread[Thread-0,6,main] 3
System. out. format ("$s %d\n", Ehread [Thread OFermain]ly
Thread. currentThread() , i); e e R, (b)
} Thread[Thread-0,6,main] 6
) Thread[Thread-0,6,main] 7
Thread[Thread-0,6,main] 8
Thread[Thread-0,6,main] 9

Exqmp|e Thread[main, 5 main] 0
Thread[main,5,main] 1
Thread[main,5,main] 2
Thread[main,5,main] 3
Thread[main,5,main] 4
public class ThreadTest extends Thread { Thread[main,5,main] 5
Thread[main,5,main] 6
public static void main(String[] args) { | |Ipread[main,5,main] 7
new ThreadTest () .start(); Ehzead [nainzolmainlis
for (int i = 0; i < 10; i++) { Thread[main,5,main] 9
System. out. format ("#s %d\n", R e s O
Thread.currentThread(), i); Thread[Thread-0,4,main] 1
) Thread[Thread-0,4,main] 2
) Thread[Thread-0,4,main] 3
Thread[Thread-0,4,main] 4
public void run() { Thread[Thread-0,4,main] 5
currentThread() .setPriority (4) ; Thread[Thread-0,4,main] 6
o (o5 6 6 0p & 3 905 60 1 Thread[Thread-0,4,main] 7
System.out.format ("$s %d\n", Thread[Thread-0,4,main] 8
Thread.currentThread(), i); Thread[Thread-0,4,main] 9
}
}
¥
waiting. ..
running.
waiting.
public class ThreadTest extends Thread { running
static boolean ok = true; waiting.
public static void main(String[] args) { ::::i:g -
new T}_lreafi-rfst() -start(); running.
for (int i =0, £ <10; ith { A
System.out.println("waiting..."); ||nning’
yield(); waiting..

}

ok = false; If threads happen to be sharing

a CPU, yield allows other waiting
threads to run. But if there are
multiple cores, yield isn’t needed

}

public void run() {
while (ok) {

System.out.println("running..."); running
yield(); waiting.
} . running...
System.out.println("done"); Gone)
}

4/30/14

Terminating Threads is tricky

0 Easily done... but only in certain ways
The safe way to terminate a thread is to have it return
from its run method
If a thread throws an uncaught exception, whole program
will be halted (but it can take a second or too...)

0 There are some old APIs but they have issues: stop(),

interrupt(), suspend(), destroy(), etc.

Issue: they can easily leave the application in a
“broken” internal state.
Many applications have some kind of variable telling
the thread to stop itself.

Threads can pause

o1 When active, a thread is “runnable”.
It may not actually be “running”. For that, a CPU must
schedule it. Higher priority threads could run first.

01 A thread can also pause
It can call Thread.sleep(k) to sleep for k milliseconds
If it tries to do “I/O” (e.g. read a file, wait for mouse
input, even open a file) this can cause it to pause
Java has a form of locks associated with objects.
When threads lock an object, one succeeds at a time.

Background (daemon) Threads

2
o In many applications we have a notion of
“foreground” and “background” (daemon) threads
Foreground threads are the ones doing visible work,
like interacting with the user or updating the display
Background threads do things like maintaining data
structures (rebalancing trees, garbage collection, etc)

o1 On your computer, the same notion of background
workers explains why so many things are always
running in the task manager.

Race Conditions

0 A “race condition” arises if two or more threads
access the same variables or objects concurrently
and at least one does updates

o Example: Suppose t1 and t2 simulatenously execute
the statement x = x + 1; for some static global x.

Internally, this involves loading x, adding 1, storing x
If 1 and t2 do this concurrently, we execute the
statement twice, but x may only be incremented once
t1 and 12 “race” to do the update

Race Conditions

o Suppose X is initially 5

o LOAD X m

o LOAD X
o ADD 1 o ADD 1

o STORE X
o STORE X

0 ... after finishing, X=6! We “lost” an update

Race Conditions

11 Race conditions are bad news

Sometimes you can make code behave correctly
despite race conditions, but more often they cause bugs

And they can cause many kinds of bugs, not just the
example we see here!

A common cause for “blue screens”, null pointer
exceptions, damaged data structures

Example — A Lucky Scenario

private Stack<String> stack = new Stack<String>();

public void doSomething() {
if (stack.isEmpty()) return;
String s = stack.pop();
//do something with s...

}

Suppose threads A and B want to call doSomething (),
and there is one element on the stack

1. thread A tests stack.isEmpty () false
2. thread A pops = stack is now empty

3. thread B tests stack.isEmpty () = true
4. thread B just returns — nothing to do

4/30/14

Example — An Unlucky Scenario

private Stack<String> stack = new Stack<String>();

public void doSomething() {
if (stack.isEmpty()) return;
String s = stack.pop();
//do something with s...

}

Suppose threads A and B want to call doSomething (),
and there is one element on the stack

1. thread A tests stack.isEmpty () = false
2. thread B tests stack.isEmpty () = false
3. thread A pops = stack is now empty

4. thread B pops = Exception!

Synchronization

0 Java has one “primary” tool for preventing these
problems, and you must use it by carefully and
explicitly — it isn’ t automatic.

Called a “synchronization barrier”
We think of it as a kind of lock

= Even if several threads try to acquire the lock at once, only
one can succeed at a time, while others wait

= When it releases the lock, the next thread can acquire it

You can’ t predict the order in which contending threads will
get the lock but it should be “fair” if priorities are the same

Solution — with synchronization

private Stack<String> stack = new Stack<String>();

public void doSomething() {
Eynchronized (stack) {
if (stack.isEmpty()) return;
String s = stack.pop() ;

//do something with s...

synchronized bl@

}

* Put critical operations in a synchronized block
* The stack object acts as a lock
* Only one thread can own the lock at a time

Solution — Locking

*You can lock on any object, including this

public synchronized void doSomething() {

}

is equivalent to

public void doSomething() {
synchronized (this) {

}

}

Synchronization+priorities

o1 Combining mundane features can get you in trouble
0 Java has priorities... and synchronization
But they don’ t “mix” nicely
High-priority runs before low priority

... The lower priority thread “starves”

0 Even worse...

With many threads, you could have a second high
priority thread stuck waiting on that starving low
priority thread! Now both are starving...

4/30/14

Fancier forms of locking

0 Java developers have created various
synchronization ADTs
Semaphores: a kind of synchronized counter

Event-driven synchronization

o1 The Windows and Linux and Apple O/S all have
kernel locking features, like file locking

0 But for Java, synchronized is the core mechanism

Deadlock

o The downside of locking — deadlock

0 A deadlock occurs when two or more competing
threads are waiting for one-another... forever

0 Example:
Thread t1 calls synchronized b inside synchronized a
But thread t2 calls synchronized a inside synchronized b

t1 waits for 12... and 12 waits for t1...

Finer grained synchronization

o Java allows you to do fancier synchronization
But can only be used inside a synchronization block

Special primatives called wait/notify

wait /notify

Suppose we put this inside an object called animator:

boolean isRunning = true;

public synchronized void run() { N
while (true) { must be synchronized!

while (isRunning) {
//do one step of sim

relinquishes lock on animator —
awaits notification

}

try {
wait();

} catch (InterruptedException ie) {}

isRunning = true; public void stopAnimation() {

} animator.isRunning = false;

}

public void restartAnimation() {
synchronized (animator) {
animator.notify () ;

notifies processes waiting

for animator lock

Summary

Use of multiple processes and multiple threads within

each process can exploit concurrency

Which may be real (multicore) or “virtual” (an illusion)

But when using threads, beware!

® Must lock (synchronize) any shared memory to avoid non-
determinism and race conditions

= Yet synchronization also creates risk of deadlocks

m Even with proper locking concurrent programs can have
other problems such as “livelock”

Serious treatment of concurrency is a complex topic

(covered in more detail in ¢s3410 and cs4410)

