
4/30/14

1

 THREADS AND
CONCURRENCY

Lecture 23 – CS2110 – Spring 2014

Prelim 2

¨  5:30 pm, Mallot 228 (even ids)
¨  7:30pm, Kennedy Call Aud (odd ids)

¨  Those who need extra time should start at the 5:30
slot, and move into Kennedy Hall for the rest of
their time when the 5:30 test ends.

¨  Those who need a quiet space should go directly to
the small room Kennedy (it is 101) at 5:30?

2

Graphs summary

¨  Dijkstra: given a vertex v, finds shortest path from v
to x for each vertex x in the graph
¤ Key idea: maintain a 5-part invariant on three sets
1.  Vertices already visited (“settled”). Distance known
2.  Frontier nodes. One hop from the settled ones
3.  Future nodes. > one hop from the settled ones

¨  Algorithm: move the “closest” frontier node to
settled, then adjust frontier and future sets to
restore the invariant.

3

Graphs summary

¨  Minimum spanning tree: a tree that reaches every
node while minimizing the summed weight of edges
¤ Prim’s algorithm: repeatedly pick the lowest-weight

edge that will connect some previously disconnected
components. A “greedy” algorithm.

¤ Kruskal’s algorithm: start with the whole graph,
repeatedly remove the highest-weight edge that won’t
disconnect the spanning tree. Also “greedy”.

¨  In all three cases, correctness is established using
inductive proofs that focus on maintaining invarients!

4

Today: Start a new topic

¨  Modern computers have “multiple cores”
¤  Instead of a single CPU on the chip
¤ 5-10 common. Intel has prototypes with 80!

¨  And even with a single core your program may
have more than one thing “to do” at a time
¤ Argues for having a way to do many things at once

¨  Finally, we often run many programs all at once

5

Why Multicore?

¤ Moore’s Law: Computer speeds and memory densities
nearly double each year

6

4/30/14

2

But a fast computer runs hot

¨  Power dissipation rises as the square of the CPU
clock rate

¨  Chips were heading towards melting down!

¨  Multicore: with four
CPUs (cores) on one chip,
even if we run each at half
speed we get more overall
performance!

7

Keeping those
cores busy

8

•  The operating system provides
support for multiple “processes”

•  In reality there there may be fewer
processors than processes

• Processes are an illusion – at the
hardware level, lots of multitasking

– memory subsystem

– video controller

– buses

– instruction prefetching

• Virtualization can even let one
machine create the illusion of many
machines (they share disks, etc)

What is a Thread?

¨  A separate “execution” that runs within a single
program and can perform a computational task
independently and concurrently with other threads

¨  Many applications do their work in just a single
thread: the one that called main() at startup
¤ But there may still be extra threads...
¤  ... Garbage collection runs in a “background” thread
¤ GUIs have a separate thread that listens for events and
“dispatches” upcalls

¨  Today: learn to create new threads of our own

9

What is a Thread?

¨  A thread is a kind of object that “independently
computes”
¤ Needs to be created, like any object
¤ Then “started”. This causes some method (like main())

to be invoked. It runs side by side with other thread in
the same program and they see the same global data

¨  The actual execution could occur on distinct CPU
cores, but doesn’t need to
¤ We can also simulate threads by multiplexing a smaller

number of cores over a larger number of threads

10

Concurrency

¨  Concurrency refers to a single program in which
several threads are running simultaneously
¤ Special problems arise
¤ They see the same data and hence can interfere with

each other, e.g. if one thread is modifying a complex
structure like a heap while another is trying to read it

¨  In cs2110 we focus on two main issues:
¤ Race conditions
¤ Deadlock

11

Thread class in Java

¨  Threads are instances of the class Thread
¤ Can create many, but they do consume space & time

¨  The Java Virtual Machine created the thread that
executes your main method.

¨  Threads have a priority
¤ Higher priority threads are executed preferentially
¤ A newly created Thread has initial priority equal to the

thread that created it (but can change)

12

4/30/14

3

Creating a new Thread (Method 1)
13

class PrimeThread extends Thread {
 long a, b;

 PrimeThread(long a, long b) {
 this.a = a; this.b = b;
 }

 public void run() {
 //compute primes between a and b
 ...
 }
}

PrimeThread p = new PrimeThread(143, 195);
p.start();

overrides
Thread.run()

If you were to call run() directly
no new thread is used:

the calling thread will run it
... but if you create a new object and

then call start(),
Java invokes run() in new thread

Creating a new Thread (Method 2)
14

class PrimeRun implements Runnable {
 long a, b;

 PrimeRun(long a, long b) {
 this.a = a; this.b = b;
 }

 public void run() {
 //compute primes between a and b
 ...
 }
}

PrimeRun p = new PrimeRun(143, 195);
new Thread(p).start();

Example
15

Thread[Thread-0,5,main] 0
Thread[main,5,main] 0
Thread[main,5,main] 1
Thread[main,5,main] 2
Thread[main,5,main] 3
Thread[main,5,main] 4
Thread[main,5,main] 5
Thread[main,5,main] 6
Thread[main,5,main] 7
Thread[main,5,main] 8
Thread[main,5,main] 9
Thread[Thread-0,5,main] 1
Thread[Thread-0,5,main] 2
Thread[Thread-0,5,main] 3
Thread[Thread-0,5,main] 4
Thread[Thread-0,5,main] 5
Thread[Thread-0,5,main] 6
Thread[Thread-0,5,main] 7
Thread[Thread-0,5,main] 8
Thread[Thread-0,5,main] 9

public class ThreadTest extends Thread {

 public static void main(String[] args) {
 new ThreadTest().start();
 for (int i = 0; i < 10; i++) {
 System.out.format("%s %d\n",
 Thread.currentThread(), i);
 }
 }

 public void run() {
 for (int i = 0; i < 10; i++) {
 System.out.format("%s %d\n",
 Thread.currentThread(), i);
 }
 }
}

Example
16

Thread[main,5,main] 0
Thread[main,5,main] 1
Thread[main,5,main] 2
Thread[main,5,main] 3
Thread[main,5,main] 4
Thread[main,5,main] 5
Thread[main,5,main] 6
Thread[main,5,main] 7
Thread[main,5,main] 8
Thread[main,5,main] 9
Thread[Thread-0,4,main] 0
Thread[Thread-0,4,main] 1
Thread[Thread-0,4,main] 2
Thread[Thread-0,4,main] 3
Thread[Thread-0,4,main] 4
Thread[Thread-0,4,main] 5
Thread[Thread-0,4,main] 6
Thread[Thread-0,4,main] 7
Thread[Thread-0,4,main] 8
Thread[Thread-0,4,main] 9

public class ThreadTest extends Thread {

 public static void main(String[] args) {
 new ThreadTest().start();
 for (int i = 0; i < 10; i++) {
 System.out.format("%s %d\n",
 Thread.currentThread(), i);
 }
 }

 public void run() {
 currentThread().setPriority(4);
 for (int i = 0; i < 10; i++) {
 System.out.format("%s %d\n",
 Thread.currentThread(), i);
 }
 }
}

Example
17

Thread[main,5,main] 0
Thread[main,5,main] 1
Thread[main,5,main] 2
Thread[main,5,main] 3
Thread[main,5,main] 4
Thread[main,5,main] 5
Thread[Thread-0,6,main] 0
Thread[Thread-0,6,main] 1
Thread[Thread-0,6,main] 2
Thread[Thread-0,6,main] 3
Thread[Thread-0,6,main] 4
Thread[Thread-0,6,main] 5
Thread[Thread-0,6,main] 6
Thread[Thread-0,6,main] 7
Thread[Thread-0,6,main] 8
Thread[Thread-0,6,main] 9
Thread[main,5,main] 6
Thread[main,5,main] 7
Thread[main,5,main] 8
Thread[main,5,main] 9

public class ThreadTest extends Thread {

 public static void main(String[] args) {
 new ThreadTest().start();
 for (int i = 0; i < 10; i++) {
 System.out.format("%s %d\n",
 Thread.currentThread(), i);
 }
 }

 public void run() {
 currentThread().setPriority(6);
 for (int i = 0; i < 10; i++) {
 System.out.format("%s %d\n",
 Thread.currentThread(), i);
 }
 }
}

Example
18

waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
done

public class ThreadTest extends Thread {
 static boolean ok = true;

 public static void main(String[] args) {
 new ThreadTest().start();
 for (int i = 0; i < 10; i++) {
 System.out.println("waiting...");
 yield();
 }
 ok = false;
 }

 public void run() {
 while (ok) {
 System.out.println("running...");
 yield();
 }
 System.out.println("done");
 }
}

If threads happen to be sharing
a CPU, yield allows other waiting
threads to run. But if there are

multiple cores, yield isn’t needed

4/30/14

4

Terminating Threads is tricky

¨  Easily done... but only in certain ways
¤ The safe way to terminate a thread is to have it return

from its run method
¤  If a thread throws an uncaught exception, whole program

will be halted (but it can take a second or too...)

¨  There are some old APIs but they have issues: stop(),
interrupt(), suspend(), destroy(), etc.
¤  Issue: they can easily leave the application in a
“broken” internal state.

¤ Many applications have some kind of variable telling
the thread to stop itself.

19

Threads can pause

¨  When active, a thread is “runnable”.
¤  It may not actually be “running”. For that, a CPU must

schedule it. Higher priority threads could run first.

¨  A thread can also pause
¤  It can call Thread.sleep(k) to sleep for k milliseconds
¤  If it tries to do “I/O” (e.g. read a file, wait for mouse

input, even open a file) this can cause it to pause
¤ Java has a form of locks associated with objects.

When threads lock an object, one succeeds at a time.

20

Background (daemon) Threads

¨  In many applications we have a notion of
“foreground” and “background” (daemon) threads
¤ Foreground threads are the ones doing visible work,

like interacting with the user or updating the display
¤ Background threads do things like maintaining data

structures (rebalancing trees, garbage collection, etc)

¨  On your computer, the same notion of background
workers explains why so many things are always
running in the task manager.

21

Race Conditions

¨  A “race condition” arises if two or more threads
access the same variables or objects concurrently
and at least one does updates

¨  Example: Suppose t1 and t2 simulatenously execute
the statement x = x + 1; for some static global x.
¤  Internally, this involves loading x, adding 1, storing x
¤  If t1 and t2 do this concurrently, we execute the

statement twice, but x may only be incremented once
¤  t1 and t2 “race” to do the update

22

Race Conditions

¨  LOAD X

¨  ADD 1

¨  STORE X

¨  ...
¨  LOAD X
¨  ADD 1
¨  STORE X

Thread t1 Thread t2

23

¨  Suppose X is initially 5

¨  ... after finishing, X=6! We “lost” an update

Race Conditions

¨  Race conditions are bad news
¤ Sometimes you can make code behave correctly

despite race conditions, but more often they cause bugs

¤ And they can cause many kinds of bugs, not just the
example we see here!

¤ A common cause for “blue screens”, null pointer
exceptions, damaged data structures

24

4/30/14

5

Example – A Lucky Scenario
25

private Stack<String> stack = new Stack<String>();

public void doSomething() {
 if (stack.isEmpty()) return;
 String s = stack.pop();
 //do something with s...
}

Suppose threads A and B want to call doSomething(),
and there is one element on the stack

1. thread A tests stack.isEmpty() false
2. thread A pops ⇒ stack is now empty
3. thread B tests stack.isEmpty() ⇒ true
4. thread B just returns – nothing to do

Example – An Unlucky Scenario
26

private Stack<String> stack = new Stack<String>();

public void doSomething() {
 if (stack.isEmpty()) return;
 String s = stack.pop();
 //do something with s...
}

Suppose threads A and B want to call doSomething(),
and there is one element on the stack

1. thread A tests stack.isEmpty() ⇒ false
2. thread B tests stack.isEmpty() ⇒ false
3. thread A pops ⇒ stack is now empty
4. thread B pops ⇒ Exception!

Synchronization

¨  Java has one “primary” tool for preventing these
problems, and you must use it by carefully and
explicitly – it isn’t automatic.
¤ Called a “synchronization barrier”
¤ We think of it as a kind of lock

n Even if several threads try to acquire the lock at once, only
one can succeed at a time, while others wait

n When it releases the lock, the next thread can acquire it
n You can’t predict the order in which contending threads will

get the lock but it should be “fair” if priorities are the same

27

Solution – with synchronization
28

private Stack<String> stack = new Stack<String>();

public void doSomething() {
 synchronized (stack) {
 if (stack.isEmpty()) return;
 String s = stack.pop();
 }
 //do something with s...
}

• Put critical operations in a synchronized block
• The stack object acts as a lock
• Only one thread can own the lock at a time

 synchronized block

Solution – Locking
29

public void doSomething() {
 synchronized (this) {
 ...
 }
}

public synchronized void doSomething() {
 ...
}

• You can lock on any object, including this

is equivalent to

Synchronization+priorities

¨  Combining mundane features can get you in trouble
¨  Java has priorities... and synchronization

¤ But they don’t “mix” nicely
¤ High-priority runs before low priority
¤  ... The lower priority thread “starves”

¨  Even worse...
¤ With many threads, you could have a second high

priority thread stuck waiting on that starving low
priority thread! Now both are starving...

30

4/30/14

6

Fancier forms of locking

¨  Java developers have created various
synchronization ADTs
¤ Semaphores: a kind of synchronized counter
¤ Event-driven synchronization

¨  The Windows and Linux and Apple O/S all have
kernel locking features, like file locking

¨  But for Java, synchronized is the core mechanism

31

Deadlock

¨  The downside of locking – deadlock

¨  A deadlock occurs when two or more competing
threads are waiting for one-another... forever

¨  Example:
¤ Thread t1 calls synchronized b inside synchronized a
¤ But thread t2 calls synchronized a inside synchronized b
¤  t1 waits for t2... and t2 waits for t1...

32

Finer grained synchronization

¨  Java allows you to do fancier synchronization
¤ But can only be used inside a synchronization block
¤ Special primatives called wait/notify

33

wait/notify
34

boolean isRunning = true;

public synchronized void run() {
 while (true) {
 while (isRunning) {
 //do one step of simulation
 }
 try {
 wait();
 } catch (InterruptedException ie) {}
 isRunning = true;
 }
}

public void stopAnimation() {
 animator.isRunning = false;
}

public void restartAnimation() {
 synchronized(animator) {
 animator.notify();
 }
}

relinquishes lock on animator –
awaits notification

notifies processes waiting
for animator lock

Suppose we put this inside an object called animator:

must be synchronized!

Summary

¤ Use of multiple processes and multiple threads within
each process can exploit concurrency
n Which may be real (multicore) or “virtual” (an illusion)

¤ But when using threads, beware!
n Must lock (synchronize) any shared memory to avoid non-

determinism and race conditions
n Yet synchronization also creates risk of deadlocks
n Even with proper locking concurrent programs can have

other problems such as “livelock”

¤ Serious treatment of concurrency is a complex topic
(covered in more detail in cs3410 and cs4410)

35

