SPANNING TREES

Lecture 21
CS2110 — Spring 2014




A lecture with two distinct parts

Part I: Finishing our discussion of graphs
Short review of DFS and BFS.
Spanning trees
Definitions, algorithms (Prim’ s, Kruskal s)

Travelling salesman problem



Undirected Trees

* An undirected graph is a free if there is
exactly one simple path between any pair
of vertices



Facts About Trees

*[El=[V]-1
» connected
* NO cycles

In fact, any two of
these properties
imply the third, and
iImply that the graph
IS a tree



Spanning Trees

A spanning tree of a connected undirected
graph (V,E) is a subgraph (V,E') that is a tree
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A spanning tree of a connected undirected
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« Same set of
vertices V

E'CE
* (V,E'") is a tree



Finding a Spanning Tree

A subtractive method

 Start with the whole graph — it is connected

* If there is a cycle, pick
an edge on the cycle,
throw it out — the
graph is still

connected (why?)

* Repeat until no more

cycles
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Minimum Spanning Trees
o

» Suppose edges are weighted, and we want a
spanning tree of minimum cost (sum of edge
weights)

« Some graphs have exactly one minimum
spanning tree. Others have multiple trees with
the same cost, any of which is a minimum
spanning tree



Minimum Spanning Trees

» Suppose edges are weighted, and we want a
spanning tree of minimum cost (sum of edge
weights)

» Useful in network
routing & other
applications

* For example, to
stream a video



3 Greedy Algorithms

A. Find a max weight edge — if it is on a cycle,
throw it out, otherwise keep it
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3 Greedy Algorithms

B. Find a min weight edge — if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's a
algorithm .
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3 Greedy Algorithms

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle
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3 Greedy Algorithms

* When edge weights are all distinct, or if there is
exactly one minimum spanning tree, the 3
algorithms all find the identical tree
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Prim’s Algorithm

prim(s) {
D[s] = 0; mark s; //start vertex
while (some vertices are unmarked) {
v = unmarked vertex with smallest D;
mark v;

for (each w adj to v) {

D[w] = min(D[w], c(v,w));
}
}
}
» O(n?) for adj matrix 0O(m + n log n) for adj list
— While-loop is executed n times O Use a PQ

— For-loop takes O(n) time O Regular PQ produces time O(n + m log m)

o Can improve to O(m + n log n) using a
fancier heap



Greedy Algorithms

0 These are examples of Greedy
Algorithms

0 The Greedy Strategy is an algorithm
design technique
O Like Divide & Conquer
0 Greedy algorithms are used to solve
optimization problems
O The goal is to find the best solution
0 Works when the problem has the
greedy-choice property

O A global optimum can be reached by
making locally optimum choices

« Example: the Change Making
Problem: Given an amount of
money, find the smallest number of
coins to make that amount

 Solution: Use a Greedy Algorithm

— Give as many large coins as you can

* This greedy strategy produces the
optimum number of coins for the
US coin system

 Different money system =greedy
strategy may fail

— Example: old UK system



Similar Code Structures

 Breadth-first-search (bfs)

: : —best: next in queue
while (some vertices are
unmarked) { —update: D[w] = D[v]+1

TS L G TR e * Dijkstra’s algorithm
vertices;
—best: next in priority queue
update w; * Prim’s algorithm
} —best: next in priority queue

mark v;

—update: D[w] = min(D[w], c(v,w))

here c(v,w) is the v—w edge weight



Traveling Salesman Problem

Given a list of cities and the distances between each
pair, what is the shortest route that visits each city
exactly once and returns to the origin city?

Basically what we want the butterfly to do in Aé! But we
don’ t mind if the butterfly revisits a city (Tile), or doesn’ t
use the very shortest possible path.

The true TSP is very hard (NP complete)... for this we want
the perfect answer in all cases, and can’ t revisit.

Most TSP algorithms start with a spanning tree, then

“evolve” it into a TSP solution. Wikipedia has a lot of
information about packages you can download...



