PRIORITY QUEUES AND
HEAPS

The Bag Interface

A Bag:

interface Bag<E> {
void insert(E obj);
E extract(); //extract some element
boolean isEmpty() ;

Like a Set except that a value can be in it more
than once. Example: a bag of coins

Refinements of Bag: Stack, Queue, PriorityQueue

Priority Queue

* A Bag in which data items are Comparable

¢ lesser elements (as determined by compareTo ()) have
higher priority

e extract () returns the element with the highest priority =
least in the compareTo () ordering

* break ties arbitrarily

Readings and Homework

| 2
Read Chapter 26 to learn about heaps

Salespeople often make matrices that show all the great features of
their product that the competitor’s product lacks. Try this for a heap
versus a BST. First, try and sell

someone on a BST: List some ' “%.

desirable properties of a BST

salesperson: List some good things

about heaps that a BST lacks. Can

you think of situations where you |
would favor one over the other?

that a heap lacks. Now be the heap

With ZipUltra heaps, you’ve got it
made in the shade my friend!

Stacks and Quevues as Lists

|

¢ Stack (LIFO) implemented as list

—insert (), extract () from front of list

* Queve (FIFO) implemented as list

—insert () on back of list, extract () from front of list

* All Bag operations are O(1)

first e —[55 o EXC
laste___——

Priority Queue Examples
| e

Scheduling jobs to run on a computer
default priority = arrival time
priority can be changed by operator

Scheduling events to be processed by an event handler
priority = time of occurrence

Airline check-in
first class, business class, coach
FIFO within each class

4/7/14

java.util.PriorityQueue<E>

boolean add(E e) {...} //insert an element (insert)

void clear() {...} //remove all elements

E peek() {...} //return min element without removing
//(null if empty)

E poll() {...} //remove min element (extract)

// (null if empty)
int size() {...}

Priority Queues as Lists

» Maintain as unordered list
—insert() put new element at front — O(1)
—-extract() mustsearch the list— O(n)

» Maintain as ordered list
—-insert() must search the list — O(n)
-extract() getelement at front— O(1)

« In either case, O(n?) to process n elements

Can we do better?

Important Special Case

* Fixed number of priority levels O,....p — 1
* FIFO within each level
« Example: airline check-in

-insert ()— insert in appropriate queue — O(1)
eextract () — must find a nonempty queue — O(p)

Heaps

* A heap is a concrete data structure that can be used
to implement priority queues

* Gives better complexity than either ordered or
unordered list implementation:

—insert(): O(logn)
—-extract(): O(logn)
* O(n log n) to process n elements

« Do not confuse with heap memory, where the Java
virtual machine allocates space for objects — different
usage of the word heap

Heaps

« Binary tree with data at each node
« Satisfies the Heap Order Invariant:

The least (highest priority) element
of any subtree is found at the root of
that subtree

« Size of the heap is “fixed” at n. (But can usually double
n if heap fills up)

Heaps

Smallest element in any subtree
is always found at the root
of that subtree

T
2| (&) (4] ()]

Note: 19, 20 < 35: Smaller elements
can be deeper in the tree!

4/7/14

Examples of Heaps

* Ages of people in family tree
— parent is always older than children, but you can have
an uncle who is younger than you

» Salaries of employees of a company

—bosses generally make more than subordinates, but a
VP in one subdivision may make less than a Project
Supervisor in a different subdivision

Balanced Heaps

These add two restrictions:

1. Any node of depth <d — 1 has exactly 2 children,
where d is the height of the tree

— implies that any two maximal paths (path from a root
to a leaf) are of length d or d — 1, and the tree has at
least 29 nodes

« All maximal paths of length d are to the left of those of
lengthd — 1

Example of a Balanced Heap

Store in an Arraylist or Vector

» Elements of the heap are stored in the array in order,
going across each level from left to right, top to bottom

 The children of the node at array index n are at indices
2n+1and2n+2

* The parent of node n is node (n — 1)/2

Store in an Arraylist or Vector

AR SH
22] [38] [55] [1o] [20]'

children of node n are found at 2n + 1 and 2n + 2

Store in an Arraylist or Vector

AR B

0 1 2 3 4 5 6 7 8 9 10 11
4 6 14 21 8 19 35 22 38 55 10 20

PSS

children of node n are found at 2n + 1 and 2n + 2

417114

insert ()

 Put the new element at the end of the array

« If this violates heap order because it is smaller than its
parent, swap it with its parent

» Continue swapping it up until it finds its rightful place

» The heap invariant is maintained!

insert ()

Cx F

2] [38] [s8] [10] [20)

insert()

A AR

2| [38] [55] [10] [20] [§]

insert ()

insert()

insert()

417114

insert()

NAAT
2] [38) [s8] [10] [20] [19

(]

insert ()

AN T

2] [38] [s5] [19] [20] [19] [35]

insert()

A AN

2] [38] [55] [10] [20] [19] [38

insert()

AN AT

2] [38] [55] [10] [20] [19] [38

insert()

insert()

« Time is O(log n), since the tree is balanced

—size of tree is exponential as a function of depth

—depth of tree is logarithmic as a function of size

417114

insert ()

/** An instance of a priority queue */
class PriorityQueue<E> extends java.util. Vector<E> {

/** Insert e into the priority queue */
public void insert(E ¢) {
super.add(e); //add to end of array
bubbleUp(size() - 1); // given on next slide
}

insert ()

class PriorityQueue<E> extends java.util. Vector<E> {

/** Bubble element k up the tree */
private void bubbleUp (int k) {
int p= (k-1)/2; //p is the parent of k
// inv: Every element satisfies the heap property except
!/ element k might be smaller than its parent
while (k>0 && get(k).compareTo(get(p)) < 0) {
swap elements k and p;
k=p;
p=(k-1)/2;
}
}

extract()

* Remove the least element — it is at the root

« This leaves a hole at the root —fill it in with the last
element of the array

« If this violates heap order because the root element is
too big, swap it down with the smaller of its children

« Continue swapping it down until it finds its rightful
place

« The heap invariant is maintained!

extract()

2 B o=

2] [38] [55] [10] [20] [19]

extract()

extract()

417114

extract()

extract()

extract()

extract()

extract()

45 []

extract()

45 []

417114

extract()

45

extract()

45 ﬂ

extract()

extract()

extract()

45 ﬂ

extract()

Time is O(log n), since the tree is balanced

417114

extract()

** Remove and return the smallest element
return null if list is empty) */

public E extract() {
if (size() == 0) return null;
E temp=get(0);
set(0, get(size() — 1)); // move last element to the root
setSize(size() - 1); // reduce size by 1
bubbleDown(0);
return temp;

// smallest value is at root

/** Bubble the root down to its heap position.
Pre: tree is a heap except: root may be >than a child */

private void bubbleDown() {
int k= 0;
// Set ¢ to smaller of k’s children
int c=2%k +2;

// X’s right child

if (¢ > size()-1 || get(c-1).compareTo(get(c)) < 0) c=c-1;

// inv tree is a heap except: element k may be > than a child.
/! Also. k’s smallest child is element ¢

while (c <size() && get(k).compareTo(get(c) > 0) {

Swap elements at k and c;
k=c;

c=2%k +2; /I k’s right child
if (¢ > size()-1 || get(c-1).compareTo(get(c)) < 0) c=c-1;

HeapSort

Given a Comparable[] array of length n,

+ Put all n elements into a heap — O(n log n)
* Repeatedly get the min — O(n log n)

public static void heapSort(Comparable[] b) {
PriorityQueue<Comparable> pq=
new PriorityQueue<Comparable>(b);
for (int i = 0; i <b.length; i++) {
b[i] = pq.extract();

One can do the
two stages in the
array itself, in
place, so
algorithm takes

} O(1) space.

¥

PQ Application: Simulation

oExample: Probabilistic model
of bank-customer arrival
times and transaction times,
how many tellers are
needed?

O Assume we have a way to
generate random inter-arrival
times

O Assume we have a way to
generate transaction times

o Can simulate the bank to get
some idea of how long
customers must wait

Time-Driven Simulation
» Check at each tick to
see if any event occurs

Event-Driven Simulation

« Advance clock to next
event, skipping
intervening ticks

» This uses a PQ!

417114

