opyright ©@2005 UC Regents. all rights reserved.

IPv4 INTERNET

TOPOLOGY MAP
AS-level INTERNET

Peering:
OutDegree
— 1659

oy

NO
osto, N
rankfurts DE

I ‘ +London, UK

Dublin, 1f;
Alges, py

Houston, ys
sn fodead

GRAPHS

These are not Graphs
]

90.00

71.88

53.75

35.63

-Aned ﬂ AN
vV

...not the kind we mean, anyway

These are

2 HE o=

Applications of Graphs

Communication networks

The internet is a huge graph
Routing and shortest path problems
Commodity distribution (flow)
Traffic control

Resource allocation

Geometric modeling

Graph Definitions

A directed graph (or digraph) is a pair (V, E) where
Vis a set
E is a set of ordered pairs (u,v) where u,y €V
Sometimes require u # v (i.e. no self-loops)

An element of V is called a vertex (pl. vertices) or node
An element of E is called an edge or arc

| V| is the size of V, often denoted by n
|E| is size of E, often denoted by m

Example Directed Graph (Digraph)

b O— L o
e

aO\’Og —) f
V ={a,b,c,d,e,f}

E ={(a,b), (a,c), (a,e), (b,c), (b,d), (b.e), (c,d),
(c.f), (d.e), (d.1), (e.,)}

V| =6, |E| = 11

Example Undirected Graph

An undirected graph is just like a directed graph,
except the edges are unordered pairs (sets) {u,v}

Example: b QS d

V ={a,b,c,d,e,f}
E ={{a,b}, {a,c}, {a,e}, {b,c}, {b,d}, {b,e}, {c.d}, {c.f},
{d.,e}, {d.,f}, {e.,f}}

Some Graph Terminology

u is the source , v is the sink of (u,v) U——>V

u, v, b, c are the endpoints of (u,v) and (b, c) b C

u, v are adjacent nodes. b, ¢ are adjacent nodes

outdegree of v in directed graph:
number of edges for which u is source

indegree of v in directed graph: u
number of edges for which v is sink

\Y
—
degree of vertex w in undirected graph: :
W

number of edges of which w is an endpoint

outdegree of u: 4 indegree of v. 3 degree of w: 2

More Graph Terminology

path: sequence of adjacent vertexes
length of path: number of edges

simple path: no vertex is repeated
/.

simple path of length 2: (b, c, d)
simple path of length 0: (b)

not a simple path: (b, c, e, b, c, d)

More Graph Terminology

cycle: path that ends at its beginning

simple cycle: only repeated vertex is its
beginning /end

acyclic graph: graph with no cycles

C
dag: directed acyclic graph bva

cycles: (b, c, e, b) (b,c,e,b,c,e, b)
simple cycle: (c,e, b, c)

graph shown 1s not a dag

No. A cycle must have at

Question: 1s (d) a cycle? least one edge

s this a dag?

Intuition: A dag has a vertex with indegree 0. Why?

This idea leads to an algorithm:

A digraph is a dag if and only if one can iteratively
delete indegree-0 vertices until the graph disappears

s this a dag?

Intuition: A dag has a vertex with indegree 0. Why?

This idea leads to an algorithm:

A digraph is a dag if and only if one can iteratively
delete indegree-0 vertices until the graph disappears

s this a dag?

\y@\d

Intuition: A dag has a vertex with indegree 0. Why?

This idea leads to an algorithm:

A digraph is a dag if and only if one can iteratively
delete indegree-0 vertices until the graph disappears

s this a dag?

d
o7 O\
O —O

Intuition: A dag has a vertex with indegree 0. Why?

This idea leads to an algorithm:

A digraph is a dag if and only if one can iteratively
delete indegree-0 vertices until the graph disappears

s this a dag?

d
/‘
Oe —

Intuition: A dag has a vertex with indegree 0. Why?

This idea leads to an algorithm:

A digraph is a dag if and only if one can iteratively
delete indegree-0 vertices until the graph disappears

s this a dag?

0;an

Intuition: A dag has a vertex with indegree 0. Why?

This idea leads to an algorithm:

A digraph is a dag if and only if one can iteratively
delete indegree-0 vertices until the graph disappears

s this a dag?

o f

Intuition: A dag has a vertex with indegree 0. Why?

This idea leads to an algorithm:

A digraph is a dag if and only if one can iteratively
delete indegree-0 vertices until the graph disappears

Topological Sort

We just computed a topological sort of the dag

This is a numbering of the vertices such that all edges go
from lower- to higher-numbered vertices

1 O—
?
C/
OONO‘

Useful in job scheduling with precedence constraints

Graph Coloring

Coloring of an undirected graph: an assignment of
a color to each node such that no two adjacent

vertices get the same color

N,

How many colors are needed to color this graph?

Graph Coloring

A coloring of an undirected graph: an assignment
of a color to each node such that no two adjacent
vertices get the same color

b d

f
2 e

How many colors are needed to color this graph?

3

An Application of Coloring

Vertices are jobs

Edge (u,v) is present if jobs u and v each require access to
the same shared resource, so they cannot execute
simultaneously

Colors are time slots to schedule the jobs

Minimum number of colors needed to color the graph =
minimum number of time slots required

b

Planarity

A graph is planar if it can be embedded in the
plane with no edges crossing

s this graph planar?

Planarity

A graph is planar if it can be embedded in the
plane with no edges crossing

Is this graph planar? YES

Detecting Planarity

Kuratowski's Theorem

K3,3

Ks

A graph is planar if and only if it does not contain
a copy of K; or K, 5 (possibly with other nodes
along the edges shown)

Detecting Planarity

Early 1970’s John Hopcroft spent time at
Stanford, talked to grad student Bob Tarjan
(now at Princeton). Together, they developed a
linear-time algorithm to test a graph for
planarity. Significant achievement.

Won Turing Award

Central Balkan Region

Nagykanizsa
Kaposvir,

The Four-Color Theorem

Every planar graph

IS 4-colorable
(Appel & Haken, 1976)

Interesting history. “Proved” in
about 1876 and published, but
ten years later, a mistake was
found. It took 90 more years for
a proof to be found.

Countries are nodes; edge between them 1f they have a common
boundary. You need 5 colors to color a map —water has to be blue!

The Four-Color Theorem

Kaposvir,

Every planar graph is ggesee

4-colorable
(Appel & Haken, 1976)

Proof rests on a lot of computation!
A program checks thousands of
“configurations”, and if none are
colorable, theorem holds.

Program written in assembly
language. Recursive, contorted, to
make it efficient. Gries found an
error in it but a “safe kind”: it might
say a configuration was colorable
when it wasn't.

Bipartite Graphs

A directed or undirected graph is bipartite if the
vertices can be partitioned into two sets such that all
edges go between the two sets

Bipartite Graphs

The following are equivalent
G is bipartite
G is 2-colorable

G has no cycles of odd length

Traveling Salesperson

Ithaca Copenhagen

Find a path of minimum distance that visits every city

Representations of Graphs

1 2
lél Adjacency Matrix

1 2 3
Adjacency List

1—'_27_;4 1 0 1 0O

2 0 0 1

2 —[3
| 3 0 0 0
3

] 4 0 1 1

Adjacency Matrix or Adjacency List?

n: number of vertices
m: number of edges

d(u): outdegree of u

Adjacency Matrix
Uses space O(n?)

Can iterate over all edges in
time O(n?)

Can answer ' Is there an
edge from u to v2~ in O(1)
time

Better for graphs (lots
of edges)

e Adjacency List

= Uses space O(m+n)

= Can iterate over all edges
in time O(m+n)

=Can answer “Is there an
edge from u to v?” in
O(d(u)) time

= Better for graphs
(fewer edges)

Graph Algorithms

e Search
— depth-first search
— breadth-first search

» Shortest paths
— Dijkstra's algorithm

* Minimum spanning trees
— Prim's algorithm
— Kruskal's algorithm

Depth-First Search

 Follow edges depth-first starting from an
arbitrary vertex r, using a stack to remember
where you came from

* When you encounter a vertex previously
visited, or there are no outgoing edges,
retreat and try another path

» Eventually visit all vertices reachable from r

* |[f there are still unvisited vertices, repeat

* O(m) time
Difficult to understand!
Let’s write a recursive procedure

Depth-First Search

boolean(] visited;

node u is visited means: visited[u] is true
To visit u means to: set visited[u] to true

Node u is REACHABLE from node v if
there is a path (u, ..., v) in which all
nodes of the path are unvisited.

1 2 3

6 O

Suppose all nodes
are unvisited.

The nodes that are
REACHABLE

from node 1 are
1,0,2,3,5

The nodes that are
REACHABLE
from 4 are 4, 5, 6.

Depth-First Search

boolean(] visited;

To “visit” a node u: set visited[u] to true.

Node u is REACHABLE from node v if
there is a path (u, ..., v) in which all
nodes of the path are unvisited.

2 3

6 O

Suppose 2 1s
already visited,
others unvisited.

The nodes that are
REACHABLE
from node 1 are 1,

0,5

The nodes that are
REACHABLE
from 4 are 4, 3, 6.

Depth-First Search

/** Node u is unvisited. Visit all nodes
that are REACHABLE from u. */
public static void dfs(int u) {

visited[u]= true;

Letubel
The nodes that are
REACHABLE

from node 1 are
1,0,2,3,5

Depth-First Search

/** Node u is unvisited. Visit all nodes
that are REACHABLE from u. */
public static void dfs(int u) {

visited[u]= true;

for each edge (u, v)
iIf v is unvisited then dfs(v);

2 3

Letubel
The nodes to be
visited are

0,2,3,5

Have to do dfs on
all unvisited
neighbors of u

Depth-First Search

/** Node u is unvisited. Visit all nodes
that are REACHABLE from u. */
public static void dfs(int u) {

visited[u]= true;

for each edge (u, v)
iIf v is unvisited then dfs(v);

2 3

6 O

Letubel
The nodes to be
visited are

0,2,3,5

Suppose the for
each loop visits
neighbors in
numerical order.
Then dfs(1) visits
the nodes 1n this
order:

1,0,2,3,5

Depth-First Search

/** Node u is unvisited. Visit all nodes
that are REACHABLE from u. */
public static void dfs(int u) {
visited[u]= true;
for each edge (u, v)
iIf v is unvisited then dfs(v);

That’s all there 1s
to the basic dfs.
You may have to
change it to fit a
particular situation.

Example: There may be a different way (other than array
visited) to know whether a node has been visited

Example: Instead of using recursion, use a loop and

maintain the stack yourself.

Breadth-First Search (BFS)

BFS visits all neighbors first before visiting their neighbors. It
goes level by level.

Use a queue instead of a stack dfs(0) visits 1n this order:
stack: last-in, first-out (LIFO) 0,1,4,5,2,3,6

queve: first-in, first-out (FIFO) bfs(0) visits in this order:

0 0,1,2,3,4,5,6

=30
1 2 3 Breadth-first not good

for the Bfly: too much
Q4 5 6 flying back and forth

Summary

We have seen an introduction to graphs and will
return to this topic on Thursday

Definitions
Testing for a dag
Depth-first and breadth-first search

