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These are not Graphs 
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...not the kind we mean, anyway 



These are Graphs 
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K5 K3,3 

= 



Applications of Graphs 
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¨  Communication networks 
¨  The internet is a huge graph 
¨  Routing and shortest path problems 
¨  Commodity distribution (flow) 
¨  Traffic control 
¨  Resource allocation 
¨  Geometric modeling 
¨  ... 



Graph Definitions 
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¨  A directed graph (or digraph) is a pair (V, E) where 
¤ V is a set 
¤  E is a set of ordered pairs (u,v) where u,v ∈ V 

n Sometimes require u ≠ v (i.e. no self-loops) 

¨  An element of V is called a vertex (pl. vertices) or node 
¨  An element of E is called an edge or arc 

¨  |V| is the size of V, often denoted by n 
¨  |E|  is size of E, often denoted by m 



Example Directed Graph (Digraph) 
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 V = { a,b,c,d,e,f  } 
 E = { (a,b), (a,c), (a,e), (b,c), (b,d), (b,e), (c,d), 

(c,f), (d,e), (d,f), (e,f) } 
 
|V| = 6, |E| = 11 
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Example Undirected Graph 
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An undirected graph is just like a directed graph, 
except the edges are unordered pairs (sets) {u,v} 
 
Example: 

V = { a,b,c,d,e,f  } 
E = { {a,b}, {a,c}, {a,e}, {b,c}, {b,d}, {b,e}, {c,d}, {c,f}, 

{d,e}, {d,f }, {e,f } } 
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Some Graph Terminology 
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¨  u is the source , v is the sink of (u,v) 
¨  u, v, b, c are the endpoints of (u,v) and (b, c) 

¨  u, v  are adjacent nodes. b, c are adjacent nodes 

¨  outdegree of u in directed graph: 
number of edges for which u is source 

¨  indegree of v in directed graph: 
number of edges for which v is sink 

¨  degree of vertex w in undirected graph: 
number of edges of which w is an endpoint 

u v 
b c 

u v 

w 

outdegree of u: 4     indegree of v:  3     degree of w: 2 



More Graph Terminology 

9 ¨  path: sequence of adjacent vertexes 
¨  length of path: number of edges  
¨  simple path: no vertex is repeated 

simple path of length 2: (b, c, d) 

simple path of length 0: (b) 

not a simple path:  (b, c, e, b, c, d) 

b c d 

e 



More Graph Terminology 

10 ¨  cycle: path that ends at its beginning 

¨  simple cycle: only repeated vertex is its 
beginning/end 

¨  acyclic graph: graph with no cycles 
¨  dag: directed acyclic graph b c d 

e 
cycles:  (b, c, e, b)        (b, c, e, b, c, e, b)  

simple cycle:                (c, e, b, c)  

graph shown is not a dag          

Question: is (d) a cycle? No. A cycle must have at 
least one edge 



Is this a dag? 
11 

¨  Intuition: A dag has a vertex with indegree 0. Why? 

¨  This idea leads to an algorithm: 
A digraph is a dag if and only if one can iteratively 
delete indegree-0 vertices until the graph disappears 
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¨  Intuition: A dag has a vertex with indegree 0. Why? 

¨  This idea leads to an algorithm: 
A digraph is a dag if and only if one can iteratively 
delete indegree-0 vertices until the graph disappears 
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Is this a dag? 
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¨  Intuition: A dag has a vertex with indegree 0. Why? 

¨  This idea leads to an algorithm: 
A digraph is a dag if and only if one can iteratively 
delete indegree-0 vertices until the graph disappears 
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Is this a dag? 
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¨  Intuition: A dag has a vertex with indegree 0. Why? 

¨  This idea leads to an algorithm: 
A digraph is a dag if and only if one can iteratively 
delete indegree-0 vertices until the graph disappears 
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Is this a dag? 
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¨  Intuition: A dag has a vertex with indegree 0. Why? 

¨  This idea leads to an algorithm: 
A digraph is a dag if and only if one can iteratively 
delete indegree-0 vertices until the graph disappears 
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Is this a dag? 
16 

¨  Intuition: A dag has a vertex with indegree 0. Why? 

¨  This idea leads to an algorithm: 
A digraph is a dag if and only if one can iteratively 
delete indegree-0 vertices until the graph disappears 
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Is this a dag? 
17 

¨  Intuition: A dag has a vertex with indegree 0. Why? 

¨  This idea leads to an algorithm: 
A digraph is a dag if and only if one can iteratively 
delete indegree-0 vertices until the graph disappears 

f 



Topological Sort 
18 

¨  We just computed a topological sort of the dag 
This is a numbering of the vertices such that all edges go 
from lower- to higher-numbered vertices 

¨  Useful in job scheduling with precedence constraints 
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Coloring of an undirected graph: an assignment of 
a color to each node such that no two adjacent 
vertices get the same color 

How many colors are needed to color this graph? 

Graph Coloring 
19 
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A coloring of an undirected graph: an assignment 
of a color to each node such that no two adjacent 
vertices get the same color 

How many colors are needed to color this graph? 

Graph Coloring 
20 
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An Application of Coloring 
21 

¨  Vertices are jobs 
¨  Edge (u,v) is present if jobs u and v each require access to 

the same shared resource, so they cannot execute 
simultaneously 

¨  Colors are time slots to schedule the jobs 

¨  Minimum number of colors needed to color the graph = 
minimum number of time slots required 
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Planarity 
22 

A graph is planar if it can be embedded in the 
plane with no edges crossing 

 
Is this graph planar? 
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Planarity 
23 

A graph is planar if it can be embedded in the 
plane with no edges crossing 

 
Is this graph planar? 
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Detecting Planarity 
24 

Kuratowski's Theorem 

 
 
A graph is planar if and only if it does not contain 
a copy of K5 or K3,3 (possibly with other nodes 
along the edges shown) 

K3,3 K5 



Detecting Planarity 
25 

Early 1970’s John Hopcroft spent time at 
Stanford, talked to grad student Bob Tarjan 
(now at Princeton). Together, they developed a 
linear-time algorithm to test a graph for 
planarity. Significant achievement. 
 
Won Turing Award  



The Four-Color Theorem 
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Every planar graph 
is 4-colorable 

(Appel & Haken, 1976) 
 
 

Interesting history. “Proved” in 
about 1876 and published, but 
ten years later, a mistake was 
found. It took 90 more years for 
a proof to be found. 
 

Countries are nodes; edge between them if they have a common 
boundary. You need 5 colors to color a map —water has to be blue! 



The Four-Color Theorem 
27 

Every planar graph is 
4-colorable 

(Appel & Haken, 1976) 
 

Proof rests on a lot of computation! 
A program checks thousands of 
“configurations”, and if none are 
colorable, theorem holds. 
 
Program written in assembly 
language. Recursive, contorted, to 
make it efficient. Gries found an 
error in it but a “safe kind”: it might 
say a configuration was colorable 
when it wasn’t. 



Bipartite Graphs 28 

A directed or undirected graph is bipartite if the 
vertices can be partitioned into two sets such that all 
edges go between the two sets 



The following are equivalent 
¤  G is bipartite 
¤  G is 2-colorable 
¤  G has no cycles of odd length 

Bipartite Graphs 
29 



Traveling Salesperson 
30 

Find a path of minimum distance that visits every city  

Amsterdam 

Rome 

Boston 

Atlanta 

London 

Paris 

Copenhagen 

Munich 

Ithaca 

New York 

Washington 

1202 
1380 

1214 

1322 

1356 

1002 

512 
216 

441 

189 
160 

1556 1323 

419 

210 

224 132 

660 505 

1078 



Representations of Graphs 
31 

  2 

  4 

Adjacency List 
    1   2   3   4      

1   0   1   0   1 

2   0   0   1   0 

3   0   0   0   0 

4   0   1   1   0 

Adjacency Matrix 

1 2 

3 4 

  3 

  2 

  1   4 

  3 

  2   3 



Adjacency Matrix or Adjacency List? 
32 

n: number of vertices 
m: number of edges 
d(u): outdegree of u 
 
Adjacency Matrix 

Uses space O(n2) 
Can iterate over all edges in 
time O(n2) 
Can answer “Is there an 
edge from u to v?” in O(1) 
time 
Better for dense graphs (lots 
of edges) 

� Adjacency List 
§ Uses space O(m+n) 
§ Can iterate over all edges 
in time O(m+n) 

§ Can answer “Is there an 
edge from u to v?” in 
O(d(u)) time 

§ Better for sparse graphs 
(fewer edges) 



Graph Algorithms 
33 

• Search 
– depth-first search 
– breadth-first search 

• Shortest paths 
– Dijkstra's algorithm 

• Minimum spanning trees 
– Prim's algorithm 
– Kruskal's algorithm 



Depth-First Search 
34 

• Follow edges depth-first starting from an 
arbitrary vertex r, using a stack to remember 
where you came from 

• When you encounter a vertex previously 
visited, or there are no outgoing edges, 
retreat and try another path 

• Eventually visit all vertices reachable from r 
•  If there are still unvisited vertices, repeat 
• O(m) time 

Difficult to understand! 
Let’s write a recursive procedure 



Depth-First Search 
35 

boolean[] visited; 
 
node u is visited means: visited[u] is true 
To visit u means to:  set visited[u] to true 
 
Node u is REACHABLE from node v if 
there is a path (u, …, v) in which all 
nodes of the path are unvisited. 

4 

1 

0 5 

2 3 

6 

Suppose all nodes 
are unvisited. 
 
The nodes that are 
REACHABLE 
from node 1 are 
1, 0, 2, 3, 5 
 
The nodes that are 
REACHABLE 
from 4 are 4, 5, 6. 



Depth-First Search 
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boolean[] visited; 
 
To “visit” a node u: set visited[u] to true. 
 
Node u is REACHABLE from node v if 
there is a path (u, …, v) in which all 
nodes of the path are unvisited. 
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1 

0 5 

2 3 
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Suppose 2 is 
already visited, 
others unvisited. 
 
The nodes that are 
REACHABLE 
from node 1 are 1, 
0, 5 
 
The nodes that are 
REACHABLE 
from 4 are 4, 5, 6. 



Depth-First Search 
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/** Node u is unvisited. Visit all nodes 
     that are REACHABLE from u. */ 
public static void dfs(int u) { 
 
 
 
 
} 

Let u be 1 
The nodes that are 
REACHABLE 
from node 1 are 
1, 0, 2, 3, 5 
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6 

visited[u]= true; 



Depth-First Search 
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/** Node u is unvisited. Visit all nodes 
     that are REACHABLE from u. */ 
public static void dfs(int u) { 
 
 
 
 
} 

Let u be 1 
The nodes to be 
visited are 
0, 2, 3, 5 

4 

1 

0 5 

2 3 

6 

visited[u]= true; 

for each edge (u, v) 
    if v is unvisited then dfs(v); 

Have to do dfs on 
all unvisited 
neighbors of u 



Depth-First Search 
39 

/** Node u is unvisited. Visit all nodes 
     that are REACHABLE from u. */ 
public static void dfs(int u) { 
 
 
 
 
} 

Let u be 1 
The nodes to be 
visited are 
0, 2, 3, 5 

4 

1 

0 5 

2 3 

6 

visited[u]= true; 

for each edge (u, v) 
    if v is unvisited then dfs(v); 

Suppose the for 
each loop visits 
neighbors in 
numerical order. 
Then dfs(1) visits 
the nodes in this 
order: 
1, 0, 2, 3, 5 



Depth-First Search 
40 

/** Node u is unvisited. Visit all nodes 
     that are REACHABLE from u. */ 
public static void dfs(int u) { 
 
 
 
} 

visited[u]= true; 
for each edge (u, v) 
    if v is unvisited then dfs(v); 

Example: There may be a different way (other than array 
visited) to know whether a node has been visited 

That’s all there is 
to the basic dfs. 

You may have to 
change it to fit a 

particular situation. 

Example: Instead of using recursion, use a loop and 
maintain the stack yourself. 



Breadth-First Search (BFS) 

BFS visits all neighbors first before visiting their neighbors. It 
goes level by level. 

Use a queue instead of a stack 
¤  stack: last-in, first-out (LIFO) 
¤  queue: first-in, first-out (FIFO) 

41 

0 

1 3 2 

6 

dfs(0) visits in this order: 
0, 1, 4,  5, 2, 3, 6 
 
bfs(0) visits in this order: 
0,1, 2, 3, 4, 5, 6 

4 5 

Breadth-first not good 
for the Bfly: too much 
flying back and forth 



Summary 

¨  We have seen an introduction to graphs and will 
return to this topic on Thursday 
¤ Definitions 
¤ Testing for a dag 
¤ Depth-first and breadth-first search 
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