
GRAPHS
Lecture 17

CS2110 – Spring 2014

These are not Graphs

2

...not the kind we mean, anyway

These are Graphs
3

K5 K3,3

=

Applications of Graphs
4

¨  Communication networks
¨  The internet is a huge graph
¨  Routing and shortest path problems
¨  Commodity distribution (flow)
¨  Traffic control
¨  Resource allocation
¨  Geometric modeling
¨  ...

Graph Definitions
5

¨  A directed graph (or digraph) is a pair (V, E) where
¤ V is a set
¤  E is a set of ordered pairs (u,v) where u,v ∈ V

n Sometimes require u ≠ v (i.e. no self-loops)

¨  An element of V is called a vertex (pl. vertices) or node
¨  An element of E is called an edge or arc

¨  |V| is the size of V, often denoted by n
¨  |E| is size of E, often denoted by m

Example Directed Graph (Digraph)
6

 V = { a,b,c,d,e,f }
 E = { (a,b), (a,c), (a,e), (b,c), (b,d), (b,e), (c,d),

(c,f), (d,e), (d,f), (e,f) }

|V| = 6, |E| = 11

b

a

c
d

e
f

Example Undirected Graph
7

An undirected graph is just like a directed graph,
except the edges are unordered pairs (sets) {u,v}

Example:

V = { a,b,c,d,e,f }
E = { {a,b}, {a,c}, {a,e}, {b,c}, {b,d}, {b,e}, {c,d}, {c,f},

{d,e}, {d,f }, {e,f } }

b

a

c
d

e
f

Some Graph Terminology
8

¨  u is the source , v is the sink of (u,v)
¨  u, v, b, c are the endpoints of (u,v) and (b, c)

¨  u, v are adjacent nodes. b, c are adjacent nodes

¨  outdegree of u in directed graph:
number of edges for which u is source

¨  indegree of v in directed graph:
number of edges for which v is sink

¨  degree of vertex w in undirected graph:
number of edges of which w is an endpoint

u v
b c

u v

w

outdegree of u: 4 indegree of v: 3 degree of w: 2

More Graph Terminology

9 ¨  path: sequence of adjacent vertexes
¨  length of path: number of edges
¨  simple path: no vertex is repeated

simple path of length 2: (b, c, d)

simple path of length 0: (b)

not a simple path: (b, c, e, b, c, d)

b c d

e

More Graph Terminology

10 ¨  cycle: path that ends at its beginning

¨  simple cycle: only repeated vertex is its
beginning/end

¨  acyclic graph: graph with no cycles
¨  dag: directed acyclic graph b c d

e
cycles: (b, c, e, b) (b, c, e, b, c, e, b)

simple cycle: (c, e, b, c)

graph shown is not a dag

Question: is (d) a cycle? No. A cycle must have at
least one edge

Is this a dag?
11

¨  Intuition: A dag has a vertex with indegree 0. Why?

¨  This idea leads to an algorithm:
A digraph is a dag if and only if one can iteratively
delete indegree-0 vertices until the graph disappears

b

a

c
d

e
f

Is this a dag?
12

¨  Intuition: A dag has a vertex with indegree 0. Why?

¨  This idea leads to an algorithm:
A digraph is a dag if and only if one can iteratively
delete indegree-0 vertices until the graph disappears

b

a

c
d

e
f

Is this a dag?
13

¨  Intuition: A dag has a vertex with indegree 0. Why?

¨  This idea leads to an algorithm:
A digraph is a dag if and only if one can iteratively
delete indegree-0 vertices until the graph disappears

b
c

d

e
f

Is this a dag?
14

¨  Intuition: A dag has a vertex with indegree 0. Why?

¨  This idea leads to an algorithm:
A digraph is a dag if and only if one can iteratively
delete indegree-0 vertices until the graph disappears

c
d

e
f

Is this a dag?
15

¨  Intuition: A dag has a vertex with indegree 0. Why?

¨  This idea leads to an algorithm:
A digraph is a dag if and only if one can iteratively
delete indegree-0 vertices until the graph disappears

d

e
f

Is this a dag?
16

¨  Intuition: A dag has a vertex with indegree 0. Why?

¨  This idea leads to an algorithm:
A digraph is a dag if and only if one can iteratively
delete indegree-0 vertices until the graph disappears

e
f

Is this a dag?
17

¨  Intuition: A dag has a vertex with indegree 0. Why?

¨  This idea leads to an algorithm:
A digraph is a dag if and only if one can iteratively
delete indegree-0 vertices until the graph disappears

f

Topological Sort
18

¨  We just computed a topological sort of the dag
This is a numbering of the vertices such that all edges go
from lower- to higher-numbered vertices

¨  Useful in job scheduling with precedence constraints

1

0

2
3

4
5

Coloring of an undirected graph: an assignment of
a color to each node such that no two adjacent
vertices get the same color

How many colors are needed to color this graph?

Graph Coloring
19

b

a

c
d

e
f

A coloring of an undirected graph: an assignment
of a color to each node such that no two adjacent
vertices get the same color

How many colors are needed to color this graph?

Graph Coloring
20

b

a

c
d

e
f

3

An Application of Coloring
21

¨  Vertices are jobs
¨  Edge (u,v) is present if jobs u and v each require access to

the same shared resource, so they cannot execute
simultaneously

¨  Colors are time slots to schedule the jobs

¨  Minimum number of colors needed to color the graph =
minimum number of time slots required

b

a

c
d

e
f

Planarity
22

A graph is planar if it can be embedded in the
plane with no edges crossing

Is this graph planar?

b

a

c
d

e
f

Planarity
23

A graph is planar if it can be embedded in the
plane with no edges crossing

Is this graph planar?

b

a

c
d

e
f

b

a

c
d

e
f

YES

Detecting Planarity
24

Kuratowski's Theorem

A graph is planar if and only if it does not contain
a copy of K5 or K3,3 (possibly with other nodes
along the edges shown)

K3,3 K5

Detecting Planarity
25

Early 1970’s John Hopcroft spent time at
Stanford, talked to grad student Bob Tarjan
(now at Princeton). Together, they developed a
linear-time algorithm to test a graph for
planarity. Significant achievement.

Won Turing Award

The Four-Color Theorem
26

Every planar graph
is 4-colorable

(Appel & Haken, 1976)

Interesting history. “Proved” in
about 1876 and published, but
ten years later, a mistake was
found. It took 90 more years for
a proof to be found.

Countries are nodes; edge between them if they have a common
boundary. You need 5 colors to color a map —water has to be blue!

The Four-Color Theorem
27

Every planar graph is
4-colorable

(Appel & Haken, 1976)

Proof rests on a lot of computation!
A program checks thousands of
“configurations”, and if none are
colorable, theorem holds.

Program written in assembly
language. Recursive, contorted, to
make it efficient. Gries found an
error in it but a “safe kind”: it might
say a configuration was colorable
when it wasn’t.

Bipartite Graphs 28

A directed or undirected graph is bipartite if the
vertices can be partitioned into two sets such that all
edges go between the two sets

The following are equivalent
¤  G is bipartite
¤  G is 2-colorable
¤  G has no cycles of odd length

Bipartite Graphs
29

Traveling Salesperson
30

Find a path of minimum distance that visits every city

Amsterdam

Rome

Boston

Atlanta

London

Paris

Copenhagen

Munich

Ithaca

New York

Washington

1202
1380

1214

1322

1356

1002

512
216

441

189
160

1556 1323

419

210

224 132

660 505

1078

Representations of Graphs
31

 2

 4

Adjacency List
 1 2 3 4

1 0 1 0 1

2 0 0 1 0

3 0 0 0 0

4 0 1 1 0

Adjacency Matrix

1 2

3 4

 3

 2

 1 4

 3

 2 3

Adjacency Matrix or Adjacency List?
32

n: number of vertices
m: number of edges
d(u): outdegree of u

Adjacency Matrix

Uses space O(n2)
Can iterate over all edges in
time O(n2)
Can answer “Is there an
edge from u to v?” in O(1)
time
Better for dense graphs (lots
of edges)

� Adjacency List
§ Uses space O(m+n)
§ Can iterate over all edges
in time O(m+n)

§ Can answer “Is there an
edge from u to v?” in
O(d(u)) time

§ Better for sparse graphs
(fewer edges)

Graph Algorithms
33

• Search
– depth-first search
– breadth-first search

• Shortest paths
– Dijkstra's algorithm

• Minimum spanning trees
– Prim's algorithm
– Kruskal's algorithm

Depth-First Search
34

• Follow edges depth-first starting from an
arbitrary vertex r, using a stack to remember
where you came from

• When you encounter a vertex previously
visited, or there are no outgoing edges,
retreat and try another path

• Eventually visit all vertices reachable from r
•  If there are still unvisited vertices, repeat
• O(m) time

Difficult to understand!
Let’s write a recursive procedure

Depth-First Search
35

boolean[] visited;

node u is visited means: visited[u] is true
To visit u means to: set visited[u] to true

Node u is REACHABLE from node v if
there is a path (u, …, v) in which all
nodes of the path are unvisited.

4

1

0 5

2 3

6

Suppose all nodes
are unvisited.

The nodes that are
REACHABLE
from node 1 are
1, 0, 2, 3, 5

The nodes that are
REACHABLE
from 4 are 4, 5, 6.

Depth-First Search
36

boolean[] visited;

To “visit” a node u: set visited[u] to true.

Node u is REACHABLE from node v if
there is a path (u, …, v) in which all
nodes of the path are unvisited.

4

1

0 5

2 3

6

Suppose 2 is
already visited,
others unvisited.

The nodes that are
REACHABLE
from node 1 are 1,
0, 5

The nodes that are
REACHABLE
from 4 are 4, 5, 6.

Depth-First Search
37

/** Node u is unvisited. Visit all nodes
 that are REACHABLE from u. */
public static void dfs(int u) {

}

Let u be 1
The nodes that are
REACHABLE
from node 1 are
1, 0, 2, 3, 5

4

1

0 5

2 3

6

visited[u]= true;

Depth-First Search
38

/** Node u is unvisited. Visit all nodes
 that are REACHABLE from u. */
public static void dfs(int u) {

}

Let u be 1
The nodes to be
visited are
0, 2, 3, 5

4

1

0 5

2 3

6

visited[u]= true;

for each edge (u, v)
 if v is unvisited then dfs(v);

Have to do dfs on
all unvisited
neighbors of u

Depth-First Search
39

/** Node u is unvisited. Visit all nodes
 that are REACHABLE from u. */
public static void dfs(int u) {

}

Let u be 1
The nodes to be
visited are
0, 2, 3, 5

4

1

0 5

2 3

6

visited[u]= true;

for each edge (u, v)
 if v is unvisited then dfs(v);

Suppose the for
each loop visits
neighbors in
numerical order.
Then dfs(1) visits
the nodes in this
order:
1, 0, 2, 3, 5

Depth-First Search
40

/** Node u is unvisited. Visit all nodes
 that are REACHABLE from u. */
public static void dfs(int u) {

}

visited[u]= true;
for each edge (u, v)
 if v is unvisited then dfs(v);

Example: There may be a different way (other than array
visited) to know whether a node has been visited

That’s all there is
to the basic dfs.

You may have to
change it to fit a

particular situation.

Example: Instead of using recursion, use a loop and
maintain the stack yourself.

Breadth-First Search (BFS)

BFS visits all neighbors first before visiting their neighbors. It
goes level by level.

Use a queue instead of a stack
¤  stack: last-in, first-out (LIFO)
¤  queue: first-in, first-out (FIFO)

41

0

1 3 2

6

dfs(0) visits in this order:
0, 1, 4, 5, 2, 3, 6

bfs(0) visits in this order:
0,1, 2, 3, 4, 5, 6

4 5

Breadth-first not good
for the Bfly: too much
flying back and forth

Summary

¨  We have seen an introduction to graphs and will
return to this topic on Thursday
¤ Definitions
¤ Testing for a dag
¤ Depth-first and breadth-first search

42

