
3/20/14

1

MINI-MAX USING TREES AND
THE JAVA COLLECTIONS FRAMEWORK

Lecture 16
CS2110 – Spring 2014

Important Dates.

¨  April 10 --- A4 due (Connect 4, minimax, trees)
¨  April 15 --- A5 due (Exercises on different topics, to

be posted by May 28)
¨  April 22 --- Prelim 2.
¨  May 1 --- A6 due (Butterfly, graphs, search).
¨  May 12 --- Final exam.

2

Today’s topics

Connect 4.
¨  Use of trees (game-tree) and recursion to make a

Connect 4 AI.
¨  Mini-max.

Java Collections Framework
¨  Generic Data Types

3

Game State and Tree
4

x o x
o o

x

x o x
o o

x x

x o x
o o
x x

x o x
o o

x
x

X’s turn
“Game State s1”

“Game State s2” “Game State s3” “Game State s4”

O’s turn

x o x
o o
x x

o

“Game State s5”

•  Game States: s1, s2, … s5
 (Also the nodes in the tree)

•  Actions: edges in the tree
•  Leaf node: ?
•  Depth of tree at node s1: ?

Games and Mini-Max

¨ Minimizing the maximum possible loss.

¨  Choose move which results in best state
¤ Select highest expected score for you

¨  Assume opponent is playing optimally too
¤ Will choose lowest expected score for you

5

Game Tree and Mini-Max
6

What move should x make?

O’s turn
(min)

x o x
o o

x

x o x
o o

x x

x o x
o o
x x

x o x
o o

x
x

x o x
o o

x
o
x

x o x
o o

x o x

x o x
o o

x x
o

x o x
o o

x x o

X’s turn
(max)

x o x
o o

x o x
x

x o x
o o

x x o
x

x o x
o o x

x o

x o x
o o x

x o

x o x
o o x

x o x

x o x
o o x

x o x

−∞

X’s turn
(max)

+∞

+∞

−∞ −∞

−∞ +∞

+∞ +∞ +∞

+∞ +∞

+∞

+∞

3/20/14

2

Properties of Mini-max

b possible moves and m steps to finish game.
¨  Time complexity?

 O(bm)
¨  Space complexity?

 O(bm) (depth-first exploration)

For tic-tac-toe, b <= 9, and m <= 9.
For chess, b ≈ 35, m ≈100 for "reasonable" games!!

7

Mini-Max is used in many games!

¨  Stock Exchange!

8

Robot Programming

¨  Can we have a robot prepare a
recipe?
¤ For example “Avogado”, an Italian dish.

¨  Natural Language à Actions.
¨  What do we need?

¤ Parsing (to understand natural language)
¤ Trees : Mini-max to figure out what

actions it can do? (some of them lead to
success and some of them to disaster)

Robot Programming

Ashutosh Saxena

Today’s topics

Connect 4.
¨  Use of trees (game-tree) and recursion to make a

Connect 4 AI.
¨  Mini-max.

Java Collections Framework
¨  Generic Data Types

11

Textbook and Homework

¨  Generics: Appendix B
¨  Generic types we discussed: Chapters 1-3, 15

¨  Homework: Use Google to find out about the old
Java Vector collection type. Vector has been
“deprecated”, meaning that it is no longer
recommended and being phased out. What more
modern type has taken over Vector’s old roles?

12

3/20/14

3

Generic Types in Java
13

¨  When using a collection (e.g.
LinkedList, HashSet,
HashMap), we generally have a single
type T of elements that we store in it (e.g.
Integer, String)

¨  Before Java 5, when extracting an
element, had to cast it to T before we
could invoke T's methods

¨  Compiler could not check that the cast
was correct at compile-time, since it didn't
know what T was

¨  Inconvenient and unsafe, could fail at
runtime

� Generics in Java
provide a way to
communicate T, the
type of elements in a
collection, to the
compiler

§  Compiler can check
that you have used
the collection
consistently

§  Result: safer and
more-efficient code

Example
14

/** Return no. of chars in the strings in
 collection of strings c. */
static int cCount(Collection c) {
 int cnt= 0;
 Iterator i= c.iterator();
 while (i.hasNext())
 cnt= cnt + ((String)i.next()).length();
 return cnt;
}

/** Return no. of chars in c */
static int cCount(Collection<String> c) {
 int cnt= 0;
 Iterator<String> i= c.iterator();
 while (i.hasNext()) {
 cnt= Cnt + ((String)i.next()).length();
 return cnt;
}

ol
d

ne
w

Example – nicer looking loop
15 /** Return no. of chars in the strings in

 * collection c of strings. */
static int cCount(Collection c) {
 int cnt= 0;
 Iterator i = c.iterator();
 while (i.hasNext())
 cnt= cnt + ((String)i.next()).length();
 return cnt;
}

/** Return the number of characters in
collection c. */

static int cCount(Collection<String> c) {
 int cnt = 0;
 for (String s: c)
 cnt= cnt + s.length();
 return cnt;
}

ol
d

ne
w

Using Generic Types
16

¨  <T> is read, “of T”
¤  Example: Stack<Integer> is read, “Stack of Integer”.

Here the “T” is “Integer”.

¨  The type annotation <T> indicates that all extractions from this
collection should be automatically cast to T

¨  Specify type in declaration, can be checked at compile time
¤ Can eliminate explicit casts

¨  In effect, T is a parameter, but it does not appear where
method parameters appear

Advantage of Generics
17

¨  Declaring Collection<String> c tells us something
about variable c (i.e. c holds only Strings)
¤  This is true wherever c is used
¤  The compiler won’t compile code that violates this

¨  Without use of generic types, explicit casting must be used
¤ A cast tells us something the programmer thinks is true at a

single point in the code
¤  The Java virtual machine checks whether the programmer is

right only at runtime

Subtypes: Example
18

Stack<Integer> s=
 new Stack<Integer>();

s.push(new Integer(7));
// Following gives compiler error
Stack<Object> t= s; …

Stack<Integer>
not a
subtype of
Stack<Object>

Stack<Integer> s =
 new Stack<Integer>();
s.push(new Integer(7));
// Compiler allows this
Stack t= s;

But
Stack<Integer> is
a subtype of Stack
(for backward
compatibility with
previous Java
versions)

3/20/14

4

Programming with Generic Interface Types
19

To use interface List<E>, supply a type argument, e.g.
List<Integer>
All occurrences of the type parameter (E in this case) are replaced by
the type argument (Integer in this case)

public interface List<E> {
 // Note: E is a type variable
 void add(E x);
 Iterator<E> iterator();
}

public interface Iterator<E> {
 E next();
 boolean hasNext();
 void remove();
}

Generic Classes
20

public class Queue<T> extends AbstractBag<T> {
 private java.util.LinkedList<T> queue
 = new java.util.LinkedList<T>();

 public void insert(T item) { queue.add(item); }

 public T extract()
 throws java.util.NoSuchElementException
 { return queue.remove(); }

 public void clear() { queue.clear() }

 public int size() { return queue.size(); }
}

Generic Classes
21

public class InsertionSort<Comparable<T>> {
 /** Sort x */
 public void sort(T[] x) {
 for (int i= 1; i < x.length; i++) {
 // invariant is: x[0..i-1] is sorted
 // Put x[i] in its rightful position
 T tmp= x[i];
 int j;
 for (j= i; j > 0 &&
 x[j-1].compareTo(tmp) > 0; j= j-1)
 x[j]= x[j-1];
 x[j]= tmp;
 }
 }
}

Java Collections Framework
22

¨  Collections: holders that let
you store and organize
objects in useful ways for
efficient access

¨  Package java.util
includes interfaces and
classes for a general
collection framework

� Goal: conciseness
§ A few concepts that are

broadly useful
§ Not an exhaustive set of

useful concepts

� The collections
framework provides

§  Interfaces (i.e., ADTs)
§  Implementations

JCF Interfaces and Classes

¨  Interfaces
¤  Collection
¤  Set (no duplicates)
¤  SortedSet
¤  List (duplicates OK)

¤  Map (i.e.,
Dictionary)

¤  SortedMap

¤  Iterator
¤  Iterable
¤  ListIterator

¨  Classes
HashSet
TreeSet
ArrayList
LinkedList

HashMap
TreeMap

23

interface java.util.Collection<E>

24

¨  public int size(); Return number of elements
¨  public boolean isEmpty(); Return true iff collection is empty
¨  public boolean add(E x);

¤  Make sure collection includes x; return true if it has
changed (some collections allow duplicates, some don’t)

¨  public boolean contains(Object x);
¤  Return true iff collection contains x (uses method equals)

¨  public boolean remove(Object x);
¤  Remove one instance of x from the collection; return true

if collection has changed
¨  public Iterator<E> iterator();

¤  Return an Iterator that enumerates elements of collection

3/20/14

5

Iterators: How “foreach” works

The notation for(Something var: collection) { … } is syntactic sugar. It
compiles into this “old code”:

The two ways of doing this are identical but the foreach loop is
nicer looking.

You can create your own iterable collections

25

Iterator<E> _i=
 collection.iterator();
while (_i.hasNext()) {
 E var= _i.Next();
 . . . Your code . . .
}

java.util.Iterator<E> (an interface)

26

¨  public boolean hasNext();
¤  Return true if the enumeration has more elements

¨  public E next();
¤  Return the next element of the enumeration
¤  Throws NoSuchElementException if no next element

¨  public void remove();
¤  Remove most recently returned element by next() from

the underlying collection
¤  Thros IllegalStateException if next() not yet called or if

remove() already called since last next()
¤  Throw UnsupportedOperationException if remove()

not supported

Additional Methods of Collection<E>
27

public Object[] toArray()
¤  Return a new array containing all elements of collection

public <T> T[] toArray(T[] dest)
¤  Return an array containing all elements of this collection;

uses dest as that array if it can
¨  Bulk Operations:

¤  public boolean containsAll(Collection<?> c);
¤  public boolean addAll(Collection<? extends E> c);
¤  public boolean removeAll(Collection<?> c);
¤  public boolean retainAll(Collection<?> c);
¤  public void clear();

java.util.Set<E> (an interface)
28

¨  Set extends Collection
¤ Set inherits all its methods

from Collection

¨  A Set contains no duplicates
If you attempt to add() an
element twice then the
second add() will return
false (i.e. the Set has not
changed)

� Write a method that checks
if a given word is within a

Set of words

� Write a method that
removes all words longer
than 5 letters from a Set

� Write methods for the union
and intersection of two

Sets

Set Implementations
29

java.util.HashSet<E> (a hashtable)
¤  Constructors

n public HashSet();
n public HashSet(Collection<? extends E> c);

n public HashSet(int initialCapacity);
n public HashSet(int initialCapacity,
 float loadFactor);

java.util.TreeSet<E> (a balanced BST [red-black tree])
¤  Constructors

n public TreeSet();
n public TreeSet(Collection<? extends E> c);

n ...

java.util.SortedSet<E> (an interface)

30

¨  SortedSet extends Set
For a SortedSet, the iterator() returns elements in sorted order
¨  Methods (in addition to those inherited from Set):

¤  public E first();
n Return first (lowest) object in this set

¤  public E last();
n Return last (highest) object in this set

¤  public Comparator<? super E> comparator();
n Return the Comparator being used by this sorted set if

there is one; returns null if the natural order is being
used

¤  …

3/20/14

6

java.lang.Comparable<T> (an interface)

31

¨  public int compareTo(T x);
Return a value (< 0), (= 0), or (> 0)

n  (< 0) implies this is before x
n  (= 0) implies this.equals(x)
n  (> 0) implies this is after x

¨  Many classes implement Comparable
¤ String, Double, Integer, Char,
java.util.Date,…

¤  If a class implements Comparable then that is considered
to be the class’s natural ordering

java.util.Comparator<T> (an interface)

32

¨  public int compare(T x1, T x2);
Return a value (< 0), (= 0), or (> 0)

n (< 0) implies x1 is before x2
n (= 0) implies x1.equals(x2)
n (> 0) implies x1 is after x2

¨  Can often use a Comparator when a class’s natural order is
not the one you want
¤ String.CASE_INSENSITIVE_ORDER is a predefined
Comparator
¤ java.util.Collections.reverseOrder() returns a Comparator
that reverses the natural order

SortedSet Implementations
33

¨  java.util.TreeSet<E>
constructors:

n public TreeSet();
n public TreeSet(Collection<? extends E> c);
n public TreeSet(Comparator<? super E> comparator);
n  ...

¨  Write a method that prints out a SortedSet of words in order
¨  Write a method that prints out a Set of words in order

java.util.List<E> (an interface)
34

¨  List extends Collection items accessed via their index
¨  Method add() puts its parameter at the end of the list
¨  The iterator() returns the elements in list-order
¨  Methods (in addition to those inherited from Collection):

¤  public E get(int i); Return the item at position i
¤  public E set(int i, E x); Place x at position i, replacing previous

item; return the previous itemvalue
¤  public void add(int i, E x);

n  Place x at position index, shifting items to make room
¤  public E remove(int index); Remove item at position i, shifting
 items to fill the space; Return the removed item
¤  public int indexOf(Object x);

n  Return index of the first item in the list that equals x (x.equals())
¤  …

List Implementations. Each includes methods specific to
its class that the other lacks

¨  java.util.ArrayList<E> (an array; doubles the length each time
 room is needed)

Constructors
n  public ArrayList();
n  public ArrayList(int initialCapacity);
n  public ArrayList(Collection<? extends E> c);

¨  java.util.LinkedList <E> (a doubly-linked list)
Constructors

n  public LinkedList();
n  public LinkedList(Collection<? extends E> c);

35

Efficiency Depends on Implementation

36

¨  Object x= list.get(k);
¤ O(1) time for ArrayList
¤ O(k) time for LinkedList

¨  list.remove(0);

¤ O(n) time for ArrayList
¤ O(1) time for LinkedList

¨  if (set.contains(x)) ...

¤ O(1) expected time for HashSet
¤ O(log n) for TreeSet

3/20/14

7

What if you need O(1) for both?

¨  Database systems have this issue

¨  They often build “secondary index” structures
¤ For example, perhaps the data is in an ArrayList
¤ But they might build a HashMap as a quick way to find

desired items

¨  The O(n) lookup becomes an O(1) operation!

37

