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InsertionSort 
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pre: b 
0                                                             b.length 
                           ?                                 

post: b 
0                                                             b.length 
                           sorted                                 

inv: 
 or:     b[0..i-1] is sorted 

b 
0                         i                                   b.length 
        sorted                     ?                                         

A loop that processes 
elements of an array 

in increasing order 
has this invariant 

inv: b 
0                  i             b.length 
 processed           ?                                         



What to do in each iteration? 
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inv: b 
0                         i                                   b.length 
        sorted                     ?                                         

b 
0                         i                                   b.length 
 2   5   5   5   7    3     ?                                         E.G. 

Push 3 down to its shortest position in b[0..i], then increase i 

b 
0                             i                               b.length 
 2   3   5   5   5    7     ?                                         

Will take time proportional to the number of swaps needed 



InsertionSort 
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// sort b[], an array of int 
// inv: b[0..i-1] is sorted 
for (int i= 1; i < b.length; i= i+1) { 
    Push b[i] down to its sorted position 

  in b[0..i] 
} 

Many people sort cards this way 
Works well when input is nearly 
sorted 

Note English 
statement in body. 
Abstraction. Says 

what to do, not how. 
 

This is the best way 
to present it. Later, 

show how to 
implement that  

with a loop 



InsertionSort 
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� Worst-case: O(n2) 
   (reverse-sorted input) 

� Best-case: O(n) 
  (sorted input) 

� Expected case: O(n2) 

// sort b[], an array of int 
// inv: b[0..i-1] is sorted 
for (int i= 1; i < b.length; i= i+1) { 
    Push b[i] down to its sorted position 

  in b[0..i] 
} 

Pushing b[i] down can take i swaps. 
Worst case takes  
     1  + 2  +  3  +  …  n-1   =   (n-1)*n/2 
Swaps. Let n = b.length 



SelectionSort 
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pre: b 
0                                                             b.length 
                           ?                                 

post: b 
0                                                             b.length 
                           sorted                                 

inv: b 
0                              i                              b.length 
  sorted                                                              , <= b[i..]        >= b[0..i-1] Additional 

term in 
invariant Keep invariant true while making progress? 

e.g.: b 
0                              i                              b.length 
 1   2   3   4   5   6    9  9  9  7  8  6  9  

Increasing i by 1 keeps inv true only if b[i] is min of b[i..] 



SelectionSort 
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Another common way for 
people to sort cards 

Runtime 
§ Worst-case O(n2) 
§ Best-case O(n2) 
§ Expected-case O(n2) 

//sort b[], an array of int 
// inv: b[0..i-1] sorted 
//         b[0..i-1]  <=  b[i..] 
for (int i= 1; i < b.length; i= i+1) { 
   int m= index of minimum of b[i..]; 
   Swap b[i] and b[m]; 
} 

sorted, smaller values         larger values b 
0                                    i                                 length 

Each iteration, swap min value of this section into b[i] 



Partition algorithm of quicksort 
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Idea  Using the pivot value x that is in b[h]: 
 
 
 

Swap array values around until b[h..k] looks like this: 
 
 
 
 

x                          ?                      
h   h+1                                                 k             

        <= x                x           >= x                                                
h                              j                           k             

pre: 

post: 

x is called 
the pivot 



20   31   24  19  45   56    4    20    5    72  14   99 
9 

pivot partition 
j 

 19   4     5   14    20   31  24   45   56   20   72  99      

Not yet 
sorted 

Not yet 
sorted 

these can be 
in any order 

these can be 
in any order The 20 could 

be in the other 
partition 



Partition algorithm 
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x                          ?                      
h   h+1                                                 k             

        <= x                x           >= x                                                
h                              j                           k             

b 

b 

   <= x            x      ?            >= x          
h                     j                t                   k             

b 

pre: 

post: 

Combine pre and post to get an invariant 



Partition algorithm 
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   <= x            x      ?            >= x          
h                     j                t                   k             

b 

j= h; t= k; 
while (j < t) { 
    if (b[j+1] <= x) { 
         Swap b[j+1] and b[j];   j= j+1; 
    } else { 
         Swap b[j+1] and b[t];   t= t-1; 
    } 
} 

Terminate when j = t, 
so the “?” segment is 
empty, so diagram 
looks like result 
diagram 

Initially, with j = h 
and t = k, this 
diagram looks like 
the start diagram 

Takes linear time: O(k+1-h) 



QuickSort procedure	
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/** Sort b[h..k]. */ 
public static void QS(int[] b, int h, int k) { 
    if (b[h..k] has < 2 elements) return; 
    int j=  partition(b, h, k); 
    // We know b[h..j–1] <= b[j] <= b[j+1..k] 
    Sort b[h..j-1] and b[j+1..k] 
} 

Base case 

Function does the 
partition algorithm and 
returns position j of pivot 



QuickSort procedure 
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/** Sort b[h..k]. */ 
public static void QS(int[] b, int h, int k) { 
    if (b[h..k] has < 2 elements) return; 
    int j=  partition(b, h, k); 
    // We know b[h..j–1] <= b[j] <= b[j+1..k] 
    // Sort b[h..j-1] and b[j+1..k] 
   QS(b, h, j-1);  
   QS(b, j+1, k); 
} 

Worst-case: quadratic 
Average-case: O(n log n) 

Worst-case space: O(n)!  --depth of 
                                           recursion can be n 

   Can rewrite it to have space O(log n) 
Average-case:  O(log n) 



Worst case quicksort: pivot always smallest value 
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x0                        >= x0 
j              

x0   x1                  >= x1 
        j              

x0   x1   x2           >= x2 
               j              

partioning at depth 0 

partioning at depth 1 

partioning at depth 2 



Best case quicksort: pivot always middle value 
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      <= x0            x0            >= x0 
0                          j                                 n 

depth 0. 1 segment of 
size ~n to partition. 

<=x1  x1  >= x1 x0  <=x2  x2  >=x2 Depth 2. 2 segments of 
size ~n/2 to partition. 

                                    
Depth 3.  4 segments of 
size ~n/4 to partition. 

Max depth: about log n.   Time to partition on each level: ~n 
Total time: O(n log n). 

Average time for Quicksort: n log n. Difficult calculation 



QuickSort 
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Quicksort developed by Sir Tony Hoare (he was 
knighted by the Queen of England for his 
contributions to education and CS). 
Will be 80 in April. 
Developed Quicksort in 1958. But he could not 
explain it to his colleague, so he gave up on it. 
Later, he saw a draft of the new language Algol 68 (which became 
Algol 60). It had recursive procedures. First time in a programming 
language. “Ah!,” he said. “I know how to write it better now.” 15 
minutes later, his colleague also understood it. 



Partition algorithm 
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Key issue: 
How to choose a pivot? 

Choosing pivot 
§ Ideal pivot: the median, since 

it splits array in half 
But computing median of 
unsorted array is O(n), quite 
complicated 
Popular heuristics: Use 
w  first array value (not good) 
w  middle array value 
w  median of first, middle, last, 

 values GOOD! 
w Choose a random element 



Quicksort with logarithmic space 

Problem is that if the pivot value is always the smallest (or always 
the largest), the depth of recursion is the size of the array to sort. 

 

Eliminate this problem by doing some of it iteratively and some 
recursively 

18 



Quicksort with logarithmic space 

Problem is that if the pivot value is always the smallest (or always 
the largest), the depth of recursion is the size of the array to sort. 

 

Eliminate this problem by doing some of it iteratively and some 
recursively 

19 



QuickSort with logarithmic space	
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/** Sort b[h..k]. */ 
public static void QS(int[] b, int h, int k) { 
    int h1= h; int k1= k; 
    // invariant b[h..k] is sorted if b[h1..k1] is sorted 
    while (b[h1..k1] has more than 1 element) { 
          Reduce the size of b[h1..k1], keeping inv true 
    } 
} 



QuickSort with logarithmic space	
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/** Sort b[h..k]. */ 
public static void QS(int[] b, int h, int k) { 
    int h1= h; int k1= k; 
    // invariant b[h..k] is sorted if b[h1..k1] is sorted 
    while (b[h1..k1] has more than 1 element) { 
          int j= partition(b, h1, k1); 
          // b[h1..j-1] <= b[j] <= b[j+1..k1] 
          if (b[h1..j-1] smaller than b[j+1..k1])  
                {  QS(b, h, j-1);  h1=  j+1; } 
         else   
                {QS(b, j+1, k1);  k1=  j-1; } 
    } 
} 

Only the smaller 
segment is sorted 

recursively. If b[h1..k1] 
has size n, the smaller 

segment has size < n/2. 
         Therefore, depth of 
recursion is at most log n 


