
SORTING
Lecture 12B

CS2110 – Spring 2014

InsertionSort

2

pre: b
0 b.length
 ?

post: b
0 b.length
 sorted

inv:
 or: b[0..i-1] is sorted

b
0 i b.length
 sorted ?

A loop that processes
elements of an array

in increasing order
has this invariant

inv: b
0 i b.length
 processed ?

What to do in each iteration?

3

inv: b
0 i b.length
 sorted ?

b
0 i b.length
 2 5 5 5 7 3 ? E.G.

Push 3 down to its shortest position in b[0..i], then increase i

b
0 i b.length
 2 3 5 5 5 7 ?

Will take time proportional to the number of swaps needed

InsertionSort
4

// sort b[], an array of int
// inv: b[0..i-1] is sorted
for (int i= 1; i < b.length; i= i+1) {
 Push b[i] down to its sorted position

 in b[0..i]
}

Many people sort cards this way
Works well when input is nearly
sorted

Note English
statement in body.
Abstraction. Says

what to do, not how.

This is the best way
to present it. Later,

show how to
implement that

with a loop

InsertionSort
5

� Worst-case: O(n2)
 (reverse-sorted input)

� Best-case: O(n)
 (sorted input)

� Expected case: O(n2)

// sort b[], an array of int
// inv: b[0..i-1] is sorted
for (int i= 1; i < b.length; i= i+1) {
 Push b[i] down to its sorted position

 in b[0..i]
}

Pushing b[i] down can take i swaps.
Worst case takes
 1 + 2 + 3 + … n-1 = (n-1)*n/2
Swaps. Let n = b.length

SelectionSort

6

pre: b
0 b.length
 ?

post: b
0 b.length
 sorted

inv: b
0 i b.length
 sorted , <= b[i..] >= b[0..i-1] Additional

term in
invariant Keep invariant true while making progress?

e.g.: b
0 i b.length
 1 2 3 4 5 6 9 9 9 7 8 6 9

Increasing i by 1 keeps inv true only if b[i] is min of b[i..]

SelectionSort

7

Another common way for
people to sort cards

Runtime
§ Worst-case O(n2)
§ Best-case O(n2)
§ Expected-case O(n2)

//sort b[], an array of int
// inv: b[0..i-1] sorted
// b[0..i-1] <= b[i..]
for (int i= 1; i < b.length; i= i+1) {
 int m= index of minimum of b[i..];
 Swap b[i] and b[m];
}

sorted, smaller values larger values b
0 i length

Each iteration, swap min value of this section into b[i]

Partition algorithm of quicksort
8

Idea Using the pivot value x that is in b[h]:

Swap array values around until b[h..k] looks like this:

x ?
h h+1 k

 <= x x >= x
h j k

pre:

post:

x is called
the pivot

20 31 24 19 45 56 4 20 5 72 14 99
9

pivot partition
j

 19 4 5 14 20 31 24 45 56 20 72 99

Not yet
sorted

Not yet
sorted

these can be
in any order

these can be
in any order The 20 could

be in the other
partition

Partition algorithm
10

x ?
h h+1 k

 <= x x >= x
h j k

b

b

 <= x x ? >= x
h j t k

b

pre:

post:

Combine pre and post to get an invariant

Partition algorithm
11

 <= x x ? >= x
h j t k

b

j= h; t= k;
while (j < t) {
 if (b[j+1] <= x) {
 Swap b[j+1] and b[j]; j= j+1;
 } else {
 Swap b[j+1] and b[t]; t= t-1;
 }
}

Terminate when j = t,
so the “?” segment is
empty, so diagram
looks like result
diagram

Initially, with j = h
and t = k, this
diagram looks like
the start diagram

Takes linear time: O(k+1-h)

QuickSort procedure	

12

/** Sort b[h..k]. */
public static void QS(int[] b, int h, int k) {
 if (b[h..k] has < 2 elements) return;
 int j= partition(b, h, k);
 // We know b[h..j–1] <= b[j] <= b[j+1..k]
 Sort b[h..j-1] and b[j+1..k]
}

Base case

Function does the
partition algorithm and
returns position j of pivot

QuickSort procedure
13

/** Sort b[h..k]. */
public static void QS(int[] b, int h, int k) {
 if (b[h..k] has < 2 elements) return;
 int j= partition(b, h, k);
 // We know b[h..j–1] <= b[j] <= b[j+1..k]
 // Sort b[h..j-1] and b[j+1..k]
 QS(b, h, j-1);
 QS(b, j+1, k);
}

Worst-case: quadratic
Average-case: O(n log n)

Worst-case space: O(n)! --depth of
 recursion can be n

 Can rewrite it to have space O(log n)
Average-case: O(log n)

Worst case quicksort: pivot always smallest value
14

x0 >= x0
j

x0 x1 >= x1
 j

x0 x1 x2 >= x2
 j

partioning at depth 0

partioning at depth 1

partioning at depth 2

Best case quicksort: pivot always middle value
15

 <= x0 x0 >= x0
0 j n

depth 0. 1 segment of
size ~n to partition.

<=x1 x1 >= x1 x0 <=x2 x2 >=x2 Depth 2. 2 segments of
size ~n/2 to partition.

Depth 3. 4 segments of
size ~n/4 to partition.

Max depth: about log n. Time to partition on each level: ~n
Total time: O(n log n).

Average time for Quicksort: n log n. Difficult calculation

QuickSort
16

Quicksort developed by Sir Tony Hoare (he was
knighted by the Queen of England for his
contributions to education and CS).
Will be 80 in April.
Developed Quicksort in 1958. But he could not
explain it to his colleague, so he gave up on it.
Later, he saw a draft of the new language Algol 68 (which became
Algol 60). It had recursive procedures. First time in a programming
language. “Ah!,” he said. “I know how to write it better now.” 15
minutes later, his colleague also understood it.

Partition algorithm
17

Key issue:
How to choose a pivot?

Choosing pivot
§ Ideal pivot: the median, since

it splits array in half
But computing median of
unsorted array is O(n), quite
complicated
Popular heuristics: Use
w  first array value (not good)
w  middle array value
w  median of first, middle, last,

 values GOOD!
w Choose a random element

Quicksort with logarithmic space

Problem is that if the pivot value is always the smallest (or always
the largest), the depth of recursion is the size of the array to sort.

Eliminate this problem by doing some of it iteratively and some
recursively

18

Quicksort with logarithmic space

Problem is that if the pivot value is always the smallest (or always
the largest), the depth of recursion is the size of the array to sort.

Eliminate this problem by doing some of it iteratively and some
recursively

19

QuickSort with logarithmic space	

20

/** Sort b[h..k]. */
public static void QS(int[] b, int h, int k) {
 int h1= h; int k1= k;
 // invariant b[h..k] is sorted if b[h1..k1] is sorted
 while (b[h1..k1] has more than 1 element) {
 Reduce the size of b[h1..k1], keeping inv true
 }
}

QuickSort with logarithmic space	

21

/** Sort b[h..k]. */
public static void QS(int[] b, int h, int k) {
 int h1= h; int k1= k;
 // invariant b[h..k] is sorted if b[h1..k1] is sorted
 while (b[h1..k1] has more than 1 element) {
 int j= partition(b, h1, k1);
 // b[h1..j-1] <= b[j] <= b[j+1..k1]
 if (b[h1..j-1] smaller than b[j+1..k1])
 { QS(b, h, j-1); h1= j+1; }
 else
 {QS(b, j+1, k1); k1= j-1; }
 }
}

Only the smaller
segment is sorted

recursively. If b[h1..k1]
has size n, the smaller

segment has size < n/2.
 Therefore, depth of
recursion is at most log n

