BINARY SEARCH AND
LOOP INVARIANTS

Lecture 12A
CS2110 — Spring 2014

Develop binary search in sorted array b for v

0 b.length
pre: b ?
0 h b.length
post: b <=v >y
Example:
4 5 6 7 b.length
pre: b2 24 4 4 4 7 99 99

If v 1s4,5,0r6, h iSSJ L Ifvis7or8, his6

If v 1n b, h 1s index of rightmost occurrence of v.
If v not in b, h 1s index before where it belongs.

Develop binary search in sorted array b for v

0 b.length
pre: b ?

0 h b.length
post: b <=v >y

Better than Binary search in last lecture because it

(1) Finds not a random occurrence of v but the rightmost one.
Useful in some situations

(2) If v 1s not 1n b, 1t gives useful information: it belongs
between b[h] and b[h+1]

(3) Works also when array 1s empty!

Develop binary search in sorted array b for v

b.length

pre: b

Store a value 1n h to make this true:

0

h

b.length

post: b

<=V

>V

Get loop invariant by combining pre- and post-

conditions, adding variable t to mark the other boundary

0

h

t

INnv: b

<=V

b.length

How does it start (what makes the invariant true)?

pre: b ?

INnv: b <=v ? >V

Make first and last partitions empty:

h=-1; t=b.length;

b.length

b.length

When does it end (when does invariant look like postcondition)?

0 h b.length
post: b <=v >y

0 h t b.length
INnv: b <=v ? >V

Stop when ? section
1s empty. That is when
h=t-1.

Therefore, continue as
long as h !=t-1.

h=-1; t=b.length;
while (h != t-1) {

b

How does body make progress toward termination (cut ? 1in half)
and keep 1nvariant true?

0 h t b.length
INnvV: b <=v ? >V

0 h e t b.length
bl <=v ? >V

h=-1; t=b.length;

while (h_!= t-1) { Let e be index of middle
int e= (h+t)/2; value of ? Section.
} Maybe we can set h or t to

e, cutting ? section in half

How does body make progress toward termination (cut ? 1in half)
and keep 1nvariant true?

0 h t b.length
INnvV: b <=v ? >V
0 h e t b.length
b| <=v 2 119 >y
0 h e t b.length
bl <«=v | <=V i 2 >y

h=-1; t=b.length;
while (h !=t-1) {
int e= (h+t)/2;

if (b[e] <=V) h=¢;

If b[e] <=, then so 1s every value
to 1ts left, since the array 1s sorted.
Therefore, h= e; keeps the invariant
true.

How does body make progress toward termination (cut ? 1in half)
and keep 1nvariant true?

0 h t b.length
inv: b v 9 >y
0 h e t b.length
b <=V ? i i ? >y
0 h e t b.length
b <=V ? E :E> \Y% >y
h=-1; t=b.length;
while (h !=1t-1) { If b[e] > v, then so 1s every value to
int e= (h+t)/2; its right, since the array 1s sorted.
if (b[e] <=V) h=c¢; Therefore, t= e; keeps the invariant
— true.
else t=¢;

)

Loop invariants

We used the concept of a loop invariant in developing algorithms
to reverse a linked list and do a binary search on a sorted array.

0 b.length
pre: b 9

0 h b.length
post: b <=v >y

0 h t b.length

Loop invariant: Important part of every formal system
for proving loops correct.

Extremely useful tool in developing a loop. Create (first draft of)
invariant from pre- and post-conditions, then develop the parts of
the loop from precondition, postcondition, invariant.

0 b.length
pre: b 9

0 h b.length
post: b <=v >y

0 h t b.length

Loop invariant: Important part of every formal system

for proving loops correct.

Invariant can be written in English, mathematics, diagrams, or
mixtures of these. The important points are precision, clarity.

inv: b

0

h

t

<=V

>V

inv: b[0..h] <= v < blt..b.length-1]

inv: b[0..h] <= v < b[t..]

inv: everything in b[0..h] is at most v,
everything in b[t..] is greater than v

b.length

About notation b[h..k].

h..h+3]

h..h+2
h..h+1]

h..h]

h..h-1]

4 elements
3 elements
2 elements

I element

How many
elements?

Use the formula: 0!

b[h..k] has k+1-h elements

h h+1 h+2 h+3

Convention: The notation
b[h..k] 1s used only when
h <= k+1.

For example, b[0..-2] 1s
not allowed.

When h = k+1, b[h. k]
denotes the empty segment
starting at b[h].

Developing loop from pre, post, inv: 4 loopy questions

{ / p re 1. How does it start? What

Init <= init makes invariant true?

// 1nv

while (b 3¢ 2. When can 1t stqp? (?hoose b so
/inv && b that inv && !'b 1mplies post

Ensure inv remains true; <—___ 4. How do we make sure

progress invariant 1s maintained?
// Inv
} 3. How does body make

//inv && !'b progress toward termination?

// post

