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RECURSION 
Lecture 6 

CS2110 – Fall 2013 

Overview references to sections in text 
2 

¨  Note: We’ve covered everything in JavaSummary.pptx! 
¨  What is recursion? 7.1-7.39   slide 1-7 

¨  Base case   7.1-7.10 slide 13 

¨  How Java stack frames work 7.8-7.10 slide 28-32 

Homework. Copy our “sum the digits” method but  comment 
out the base case.  Now run it: what happens in Eclipse?   
 
Now restore the base case.  Use Eclipse in debug mode and put 
a break statement on the “return” of the base case.  Examine the  
stack and look at arguments to each level of the recursive call. 

Recursion 
3 

Arises in two forms in computer science 
¤  Recursion as a mathematical tool for defining a function in 

terms of itself in a simpler case 

¤  Recursion as a programming tool. You’ve seen this previously 
but we’ll take it to mind-bending extremes (by the end of the 
class it will seem easy!) 

Mathematical induction is used to prove that a recursive function 
works correctly. This requires a good, precise function specification. 
See this in a later lecture. 

Recursion as a math technique 
4 

Broadly, recursion is a powerful technique for defining 
functions, sets, and programs 

A few recursively-defined functions and programs 
¤  factorial  
¤  combinations 
¤  exponentiation (raising to an integer power) 

Some recursively-defined sets 
¤  grammars  
¤  expressions 
¤  data structures (lists, trees, ...) 

Example: Sum the digits in a number 
5 

¨  E.g. sum(87012) = 2+(1+(0+(7+8))) = 18 

 /** return sum of digits in n. 
    * Precondition:  n >= 0 */  
   public static int sum(int n) { 
        if (n < 10) return n; 
  
       // { n has at least two digits } 
       // return first digit + sum of rest 
       return n%10  +  sum(n/10); 
   } 

sum calls itself! 

Example: Is a string a palindrome? 
6 

¨  isPal(“racecar”) = true 
¨  isPal(“pumpkin”) = false 

/** = "s is a palindrome" */ 
public static boolean isPal(String s) { 
     if (s.length() <= 1) 
         return true; 
         
     // { s has at least 2 chars } 
     int n= s.length()-1; 
     return s.charAt(0) == s.charAt(n)  &&  isPal(s.substring(1, n)); 
} 

r a c e c a r 

a c e c a

c e c 

e 

Substring from  
s[1] to s[n-1] 
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Example: Count the e’s in a string 
7 

¨  countEm(‘e’, “it is easy to see that this has many e’s”) = 4 
¨  countEm(‘e’, “Mississippi”) = 0 

 /** =  number of times c occurs in s */ 
 public static int countEm(char c, String s) { 
    if (s.length() == 0) return 0; 

    // { s has at least 1 character } 
    if (s.charAt(0) != c) 
         return countEm(c, s.substring(1)); 

    // { first character of s is c} 
    return 1 + countEm (c, s.substring(1)); 
} 

Substring s[1..], 
i.e. s[1], …, 
s(s.length()-1) 

Example: The Factorial Function  (n!) 
8 

Define n! = n·∙(n-1)·∙(n-2)·∙·∙·∙3·∙2·∙1      
          read: “n factorial” 

  E.g. 3! = 3·∙2·∙1 = 6 
 

Looking at definition, can see that n! = n * (n-1)! 
 

By convention, 0! = 1 

The function int → int that gives n! on input n is called the 
factorial function 

  

A Recursive Program 
9 

/** = n!. Precondition: n >= 0 */ 
static int fact(int n) { 
   if (n = = 0) 
        return 1; 
   // { n > 0 } 
   return n*fact(n-1); 
} 

0! = 1 
n! = n·(n-1)!,  n > 0 

General Approach to Writing Recursive 
Functions 

10 

1.  Find base case(s) – small values of n for which you 
can just write down the solution (e.g. 0! = 1) 
 

2.  Try to find a parameter, say n, such that the solution 
for n can be obtained by combining solutions to the 
same problem using smaller values of n (e.g. (n-1) in 
our factorial example) 

3.  Verify that, for any valid value of n, applying the 
reduction of step 1 repeatedly will ultimately hit 
one of the base cases     

Example: Tower of Hanoi 
Legend has it that there were three diamond needles set into 

the floor of the temple of Brahma in Hanoi. 

Stacked upon the leftmost needle were 64 golden disks, each a 
different size, stacked in concentric order: 

A Legend 
The priests were to transfer the disks from the first needle to the 

second needle, using the third as necessary. 

But they could only move one disk at a time, and could never 
put a larger disk on top of a smaller one. 

When they completed this task, the world would end! 
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To Illustrate 
For simplicity, suppose there were just 3 disks, and we’ll refer to 

the three needles as A, B, and C... 

Since we can only move one disk at a time, we move the top 
disk from A to B. 

Example 
For simplicity, suppose there were just 3 disks, and we’ll refer to 

the three needles as A, B, and C... 

We then move the top disk from A to C. 

Example (Ct’d) 
For simplicity, suppose there were just 3 disks, and we’ll refer to 

the three needles as A, B, and C... 

We then move the top disk from B to C. 

Example (Ct’d) 
For simplicity, suppose there were just 3 disks, and we’ll refer to 

the three needles as A, B, and C... 

We then move the top disk from A to B. 

Example (Ct’d) 
For simplicity, suppose there were just 3 disks, and we’ll refer to 

the three needles as A, B, and C... 

We then move the top disk from C to A. 

Example (Ct’d) 
For simplicity, suppose there were just 3 disks, and we’ll refer to 

the three needles as A, B, and C... 

We then move the top disk from C to B. 
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Example (Ct’d) 
For simplicity, suppose there were just 3 disks, and we’ll refer to 

the three needles as A, B, and C... 

We then move the top disk from A to B. 

Example (Ct’d) 
For simplicity, suppose there were just 3 disks, and we’ll refer to 

the three needles as A, B, and C... 

and we’re done! 

The problem gets more difficult as the number of disks 
increases... 

Our Problem 
Today’s problem is to write a program that generates the 

instructions for the priests to follow in moving the disks. 

While quite difficult to solve iteratively, this problem has a 
simple and elegant recursive solution. 

General Approach to Writing Recursive 
Functions 

22 

1.  Find base case(s) – small values of n for which you 
can just write down the solution (e.g. 0! = 1) 
 

2.  Try to find a parameter, say n, such that the solution 
for n can be obtained by combining solutions to the 
same problem using smaller values of n (e.g. (n-1) in 
our factorial example) 

3.  Verify that, for any valid value of n, applying the 
reduction of step 1 repeatedly will ultimately hit 
one of the base cases     

Design 
Basis: What is an instance of the problem that is trivial? 
→ n == 1 

Since this base case could occur when the disk is on any 
needle, we simply output the instruction to move the top 
disk from A to B. 

Design 
Basis: What is an instance of the problem that is trivial? 
→ n == 1 

Since this base case could occur when the disk is on any 
needle, we simply output the instruction to move the top 
disk from A to B. 
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Design (Ct’d) 
Induction Step: n > 1 
→ How can recursion help us out? 

a. Recursively move n-1 disks from A to C. 

Design (Ct’d) 
Induction Step: n > 1 
→ How can recursion help us out? 

b. Move the one remaining disk from A to B. 

Design (Ct’d) 
Induction Step: n > 1 
→ How can recursion help us out? 

c. Recursively move n-1 disks from C to B... 

Design (Ct’d) 
Induction Step: n > 1 
→ How can recursion help us out? 

d. We’re done! 

Tower of Hanoi: Code 

void Hanoi(int n, string a, string b, string c) 
    {  
       if (n == 1)  /* base case */ 
          Move(a,b); 
       else { /* recursion */ 
          Hanoi(n-1,a,c,b); 
          Move(a,b); 
          Hanoi(n-1,c,b,a); 
       } 
   } 

Tower of Hanoi on Robot! 
30 



2/12/14 

6 

The Fibonacci Function 
31 

Mathematical definition: 
       fib(0) = 0 
       fib(1) = 1 
       fib(n) = fib(n - 1) + fib(n - 2),  n ≥ 2 

Fibonacci sequence:  0, 1, 1, 2, 3, 5, 8, 13, 
… 

/** = fibonacci(n). Pre: n >= 0 */ 
static int fib(int n) { 
   if (n <= 1) return n; 
   // { 1 < n } 
   return fib(n-2) + fib(n-1); 
}  

two base cases! 

Fibonacci (Leonardo 
Pisano) 1170-1240? 

 
Statue in Pisa, Italy 
Giovanni Paganucci 

1863 

Recursive Execution 
32 

fib(4) 

fib(2) 

fib(0) fib(1) 

Execution of fib(4): 

fib(3) 

fib(0) fib(1) 

fib(1) fib(2) 

/** = fibonacci(n) …*/ 
static int fib(int n) { 
   if (n <= 1) return n; 
   // { 1 < n } 
   return fib(n-2) + fib(n-1); 
}  

Non-Negative Integer Powers 
33 

an = a·∙a·∙a·∙·∙·∙a (n times) 

Alternative description: 
¤ a0 = 1 
¤ an+1 = a·∙an 

/** = an. Pre: n >= 0 */ 
static int power(int a, int n) { 
   if (n == 0) return 1; 
   return a*power(a, n-1); 
} 

A Smarter Version 
34 

Power computation: 
¤  a0 = 1 
¤  If n is nonzero and even, an = (a*a)n/2 

¤  If n is nonzero, an = a * an-1 
Java note: For ints x and y, x/y is the integer part of the 
quotient 

Judicious use of the second property makes this a logarithmic 
algorithm, as we will see 

Example: 38 = (3*3) * (3*3) * (3*3) * (3*3) = (3*3) 4  

Smarter Version in Java 
35 

¨  n = 0:  a0 = 1 
¨  n nonzero and even:  an = (a*a)n/2 

¨  n nonzero:  an = a·∙an-1 

/** = a**n. Precondition: n >= 0 */ 
static int power(int a, int n) { 
   if (n == 0) return 1; 
   if (n%2 == 0) return power(a*a, n/2); 
   return a * power(a, n-1); 
} 

Build table of multiplications 
36 

n n mults 

0 0 

1 2**0 1 

2 2**1 2 

3 3 

4 2**2 3 

5 4 

6 4 

7 4 

8 2**3 4 

9 5 

… 

16 2**4 5 

Start with n = 0, then n = 1, etc. For 
each, calculate number of mults based 
on method body and recursion. 

See from the table: For n a power of 2, 
n = 2**k, only k+1 = (log n) + 1 mults 

static int power(int a, int n) { 
   if (n == 0) return 1; 
   if (n%2 == 0) return power (a*a, n/2); 
   return a * power (a, n-1); 
} 

For n = 2**15 = 32768, only 16 mults! 
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How Java “compiles” recursive code 
37 

Key idea:  
¤ Java uses a stack to remember parameters and local 

variables across recursive calls 
¤ Each method invocation gets its own stack frame 

A stack frame contains storage for 
¤ Local variables of method 
¤ Parameters of method 
¤ Return info (return address and return value) 
¤ Perhaps other bookkeeping info 

Stacks 
38 

¨  Like a stack of dinner plates 
¨  You can push data on top or 

pop data off the top in a LIFO 
(last-in-first-out) fashion 

¨  A queue is similar, except it is 
FIFO (first-in-first-out) 

top element 
2nd element 
3rd element 

... 

bottom 
element 

... 

top-of-stack 
pointer 

stack grows 

return info 

local variables 

parameters 

Stack Frame 
39 

A new stack frame is pushed 
with each recursive call 

The stack frame is popped 
when the method returns 

¨  Leaving a return value (if 
there is one) on top of 
the stack 

a stack frame 

retval 

a, n 

Example: power(2, 5) 
40 

return info 

(a = ) 2 
(n = ) 5 

(hP = ) ? 

return info 

(a = ) 2 
(n = ) 5 

(hP = ) ? 

return info 

(a = ) 2 
(n = ) 2 

(hP = ) ? 

return info 

(a = ) 2 
(n = ) 5 

(hP = ) ? 

return info 

(a = ) 2 
(n = ) 2 

(hP = ) ? 

return info 

(a = ) 2 
(n = ) 1 

(hP = ) ? 

return info 

(a = ) 2 
(n = ) 5 
(hP = ) 4 

return info 

(a = ) 2 
(n = ) 5 
(hP = ) ? 

return info 

(a = ) 2 
(n = ) 2 
(hP = ) 2 

return info 

(a = ) 2 
(n = ) 5 
(hP = ) ? 

return info 

(a = ) 2 
(n = ) 2 
(hP = ) ? 

return info 

(a = ) 2 
(n = ) 1 
(hP = ) 1 

(retval = ) 1 

(retval = ) 2 

(retval = ) 4 

(retval = ) 32 

hP: short for halfPower  

How Do We Keep Track? 
41 

¨  Many frames may exist, but computation occurs only in the top 
frame 
¤  The ones below it are waiting for results 

¨  The hardware has nice support for this way of implementing 
function calls, and recursion is just a kind of function call 

Conclusion 
42 

Recursion is a convenient and powerful way to define functions 

Problems that seem insurmountable can often be solved in a 
“divide-and-conquer” fashion: 

¤  Reduce a big problem to smaller problems of the same 
kind, solve the smaller problems 

¤  Recombine the solutions to smaller problems to form 
solution for big problem 

Important application (next lecture): parsing 
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Extra Slides 
43 

A cautionary note 
44 

¨  Keep in mind that each instance of the recursive 
function has its own local variables 

¨  Also, remember that “higher” instances are waiting 
while “lower” instances run 

¨  Do not touch global variables from within recursive 
functions 
¤ Legal … but a common source of errors 
¤ Must have a really clear mental picture of how 

recursion is performed to get this right! 

Memoization (fancy term for “caching”) 
45 

Memoization is an optimization technique used to speed up 
computer programs by having function calls avoid repeating the 
calculation of results for previously processed inputs. 

¤  First time the function is called, save result 
¤ Next times, look up the result 

n Assumes a “side-effect free” function: The function just 
computes the result, it doesn’t change things 

n  If the function depends on anything that changes, must 
“empty” the saved results list 

One thing to notice: Fibonacci 
46 

This way of computing the Fibonacci function is elegant but 
inefficient 

It “recomputes” answers again and again! 

To improve speed, need to save  
known answers in a table! 

¤ One entry per answer 
¤  Such a table is called a cache 

fib(4) 

fib(2) 

fib(0) fib(1) 

fib(3) 

fib(0) fib(1) 

fib(1) fib(2) 

Adding Memoization to our solution 

Before memoization: 

47 

static int fib(int n) { 
   if (n <= 1) return n; 
   return fib(n-2) + fib(n-1); 
}  

/** For  0 <= k < cached.size(),  cached[k] = fib(k) */ 
static ArrayList<Integer> cached=  new ArrayList<Integer>(); 

The list used to memoize 

/** For  0 <= k < cached.size(),  cached[k] = fib(k) */ 
static ArrayList<Integer> cached=  new ArrayList<Integer>(); 
 
static int fib(int n) { 
   if (n < cached.size()) return cached.get(n); 
   int v; 
   if (n <= 1) 
        v=  n; 
   else v=  fib(n-2) + fib(n-1); 
   if (n == cached.size()) 
       cached.add(v); 
   return v; 
}  

After Memoization 

This works because of 
definition of cached 

48 

This appends v to cached, 
keeping cached’s 
definition true 
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Notice the development process 
49 

¨  We started with the idea of recursion 
¨  Created a very simple recursive procedure 

¨  Noticed it will be slow because it wastefully recomputes the 
same thing again and again 

¨  We made it a bit more complex but gained a lot of speed in 
doing so 

¨  This is a common software engineering pattern 

Why did it work? 
50 

¨  This cached list “works” because for each value of 
n, either cached.get(n) is still undefined or has fib(n) 

¨  Takes advantage of the fact that an ArrayList adds 
elements at the end and indexes from 0 

0 1 1 2 3 

cached@BA8900, size=5 

cached.get(0) = 0 
cached.get(1) = 1 … cached.get(n) = fib(n) 

Property of our code: cached.get(n) accessed after fib(n) computed 


