
2/12/14

1

RECURSION
Lecture 6

CS2110 – Fall 2013

Overview references to sections in text
2

¨  Note: We’ve covered everything in JavaSummary.pptx!
¨  What is recursion? 7.1-7.39 slide 1-7

¨  Base case 7.1-7.10 slide 13

¨  How Java stack frames work 7.8-7.10 slide 28-32

Homework. Copy our “sum the digits” method but comment
out the base case. Now run it: what happens in Eclipse?

Now restore the base case. Use Eclipse in debug mode and put
a break statement on the “return” of the base case. Examine the
stack and look at arguments to each level of the recursive call.

Recursion
3

Arises in two forms in computer science
¤  Recursion as a mathematical tool for defining a function in

terms of itself in a simpler case

¤  Recursion as a programming tool. You’ve seen this previously
but we’ll take it to mind-bending extremes (by the end of the
class it will seem easy!)

Mathematical induction is used to prove that a recursive function
works correctly. This requires a good, precise function specification.
See this in a later lecture.

Recursion as a math technique
4

Broadly, recursion is a powerful technique for defining
functions, sets, and programs

A few recursively-defined functions and programs
¤  factorial
¤  combinations
¤  exponentiation (raising to an integer power)

Some recursively-defined sets
¤  grammars
¤  expressions
¤  data structures (lists, trees, ...)

Example: Sum the digits in a number
5

¨  E.g. sum(87012) = 2+(1+(0+(7+8))) = 18

 /** return sum of digits in n.
 * Precondition: n >= 0 */
 public static int sum(int n) {
 if (n < 10) return n;

 // { n has at least two digits }
 // return first digit + sum of rest
 return n%10 + sum(n/10);
 }

sum calls itself!

Example: Is a string a palindrome?
6

¨  isPal(“racecar”) = true
¨  isPal(“pumpkin”) = false

/** = "s is a palindrome" */
public static boolean isPal(String s) {
 if (s.length() <= 1)
 return true;

 // { s has at least 2 chars }
 int n= s.length()-1;
 return s.charAt(0) == s.charAt(n) && isPal(s.substring(1, n));
}

r a c e c a r

a c e c a

c e c

e

Substring from
s[1] to s[n-1]

2/12/14

2

Example: Count the e’s in a string
7

¨  countEm(‘e’, “it is easy to see that this has many e’s”) = 4
¨  countEm(‘e’, “Mississippi”) = 0

 /** = number of times c occurs in s */
 public static int countEm(char c, String s) {
 if (s.length() == 0) return 0;

 // { s has at least 1 character }
 if (s.charAt(0) != c)
 return countEm(c, s.substring(1));

 // { first character of s is c}
 return 1 + countEm (c, s.substring(1));
}

Substring s[1..],
i.e. s[1], …,
s(s.length()-1)

Example: The Factorial Function (n!)
8

Define n! = n·∙(n-1)·∙(n-2)·∙·∙·∙3·∙2·∙1
 read: “n factorial”

 E.g. 3! = 3·∙2·∙1 = 6

Looking at definition, can see that n! = n * (n-1)!

By convention, 0! = 1

The function int → int that gives n! on input n is called the
factorial function

A Recursive Program
9

/** = n!. Precondition: n >= 0 */
static int fact(int n) {
 if (n = = 0)
 return 1;
 // { n > 0 }
 return n*fact(n-1);
}

0! = 1
n! = n·(n-1)!, n > 0

General Approach to Writing Recursive
Functions

10

1.  Find base case(s) – small values of n for which you
can just write down the solution (e.g. 0! = 1)

2.  Try to find a parameter, say n, such that the solution
for n can be obtained by combining solutions to the
same problem using smaller values of n (e.g. (n-1) in
our factorial example)

3.  Verify that, for any valid value of n, applying the
reduction of step 1 repeatedly will ultimately hit
one of the base cases

Example: Tower of Hanoi
Legend has it that there were three diamond needles set into

the floor of the temple of Brahma in Hanoi.

Stacked upon the leftmost needle were 64 golden disks, each a
different size, stacked in concentric order:

A Legend
The priests were to transfer the disks from the first needle to the

second needle, using the third as necessary.

But they could only move one disk at a time, and could never
put a larger disk on top of a smaller one.

When they completed this task, the world would end!

2/12/14

3

To Illustrate
For simplicity, suppose there were just 3 disks, and we’ll refer to

the three needles as A, B, and C...

Since we can only move one disk at a time, we move the top
disk from A to B.

Example
For simplicity, suppose there were just 3 disks, and we’ll refer to

the three needles as A, B, and C...

We then move the top disk from A to C.

Example (Ct’d)
For simplicity, suppose there were just 3 disks, and we’ll refer to

the three needles as A, B, and C...

We then move the top disk from B to C.

Example (Ct’d)
For simplicity, suppose there were just 3 disks, and we’ll refer to

the three needles as A, B, and C...

We then move the top disk from A to B.

Example (Ct’d)
For simplicity, suppose there were just 3 disks, and we’ll refer to

the three needles as A, B, and C...

We then move the top disk from C to A.

Example (Ct’d)
For simplicity, suppose there were just 3 disks, and we’ll refer to

the three needles as A, B, and C...

We then move the top disk from C to B.

2/12/14

4

Example (Ct’d)
For simplicity, suppose there were just 3 disks, and we’ll refer to

the three needles as A, B, and C...

We then move the top disk from A to B.

Example (Ct’d)
For simplicity, suppose there were just 3 disks, and we’ll refer to

the three needles as A, B, and C...

and we’re done!

The problem gets more difficult as the number of disks
increases...

Our Problem
Today’s problem is to write a program that generates the

instructions for the priests to follow in moving the disks.

While quite difficult to solve iteratively, this problem has a
simple and elegant recursive solution.

General Approach to Writing Recursive
Functions

22

1.  Find base case(s) – small values of n for which you
can just write down the solution (e.g. 0! = 1)

2.  Try to find a parameter, say n, such that the solution
for n can be obtained by combining solutions to the
same problem using smaller values of n (e.g. (n-1) in
our factorial example)

3.  Verify that, for any valid value of n, applying the
reduction of step 1 repeatedly will ultimately hit
one of the base cases

Design
Basis: What is an instance of the problem that is trivial?
→ n == 1

Since this base case could occur when the disk is on any
needle, we simply output the instruction to move the top
disk from A to B.

Design
Basis: What is an instance of the problem that is trivial?
→ n == 1

Since this base case could occur when the disk is on any
needle, we simply output the instruction to move the top
disk from A to B.

2/12/14

5

Design (Ct’d)
Induction Step: n > 1
→ How can recursion help us out?

a. Recursively move n-1 disks from A to C.

Design (Ct’d)
Induction Step: n > 1
→ How can recursion help us out?

b. Move the one remaining disk from A to B.

Design (Ct’d)
Induction Step: n > 1
→ How can recursion help us out?

c. Recursively move n-1 disks from C to B...

Design (Ct’d)
Induction Step: n > 1
→ How can recursion help us out?

d. We’re done!

Tower of Hanoi: Code

void Hanoi(int n, string a, string b, string c)
 {
 if (n == 1) /* base case */
 Move(a,b);
 else { /* recursion */
 Hanoi(n-1,a,c,b);
 Move(a,b);
 Hanoi(n-1,c,b,a);
 }
 }

Tower of Hanoi on Robot!
30

2/12/14

6

The Fibonacci Function
31

Mathematical definition:
 fib(0) = 0
 fib(1) = 1
 fib(n) = fib(n - 1) + fib(n - 2), n ≥ 2

Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13,
…

/** = fibonacci(n). Pre: n >= 0 */
static int fib(int n) {
 if (n <= 1) return n;
 // { 1 < n }
 return fib(n-2) + fib(n-1);
}

two base cases!

Fibonacci (Leonardo
Pisano) 1170-1240?

Statue in Pisa, Italy
Giovanni Paganucci

1863

Recursive Execution
32

fib(4)

fib(2)

fib(0) fib(1)

Execution of fib(4):

fib(3)

fib(0) fib(1)

fib(1) fib(2)

/** = fibonacci(n) …*/
static int fib(int n) {
 if (n <= 1) return n;
 // { 1 < n }
 return fib(n-2) + fib(n-1);
}

Non-Negative Integer Powers
33

an = a·∙a·∙a·∙·∙·∙a (n times)

Alternative description:
¤ a0 = 1
¤ an+1 = a·∙an

/** = an. Pre: n >= 0 */
static int power(int a, int n) {
 if (n == 0) return 1;
 return a*power(a, n-1);
}

A Smarter Version
34

Power computation:
¤  a0 = 1
¤  If n is nonzero and even, an = (a*a)n/2

¤  If n is nonzero, an = a * an-1
Java note: For ints x and y, x/y is the integer part of the
quotient

Judicious use of the second property makes this a logarithmic
algorithm, as we will see

Example: 38 = (3*3) * (3*3) * (3*3) * (3*3) = (3*3) 4

Smarter Version in Java
35

¨  n = 0: a0 = 1
¨  n nonzero and even: an = (a*a)n/2

¨  n nonzero: an = a·∙an-1

/** = a**n. Precondition: n >= 0 */
static int power(int a, int n) {
 if (n == 0) return 1;
 if (n%2 == 0) return power(a*a, n/2);
 return a * power(a, n-1);
}

Build table of multiplications
36

n n mults

0 0

1 2**0 1

2 2**1 2

3 3

4 2**2 3

5 4

6 4

7 4

8 2**3 4

9 5

…

16 2**4 5

Start with n = 0, then n = 1, etc. For
each, calculate number of mults based
on method body and recursion.

See from the table: For n a power of 2,
n = 2**k, only k+1 = (log n) + 1 mults

static int power(int a, int n) {
 if (n == 0) return 1;
 if (n%2 == 0) return power (a*a, n/2);
 return a * power (a, n-1);
}

For n = 2**15 = 32768, only 16 mults!

2/12/14

7

How Java “compiles” recursive code
37

Key idea:
¤ Java uses a stack to remember parameters and local

variables across recursive calls
¤ Each method invocation gets its own stack frame

A stack frame contains storage for
¤ Local variables of method
¤ Parameters of method
¤ Return info (return address and return value)
¤ Perhaps other bookkeeping info

Stacks
38

¨  Like a stack of dinner plates
¨  You can push data on top or

pop data off the top in a LIFO
(last-in-first-out) fashion

¨  A queue is similar, except it is
FIFO (first-in-first-out)

top element
2nd element
3rd element

...

bottom
element

...

top-of-stack
pointer

stack grows

return info

local variables

parameters

Stack Frame
39

A new stack frame is pushed
with each recursive call

The stack frame is popped
when the method returns

¨  Leaving a return value (if
there is one) on top of
the stack

a stack frame

retval

a, n

Example: power(2, 5)
40

return info

(a =) 2
(n =) 5

(hP =) ?

return info

(a =) 2
(n =) 5

(hP =) ?

return info

(a =) 2
(n =) 2

(hP =) ?

return info

(a =) 2
(n =) 5

(hP =) ?

return info

(a =) 2
(n =) 2

(hP =) ?

return info

(a =) 2
(n =) 1

(hP =) ?

return info

(a =) 2
(n =) 5
(hP =) 4

return info

(a =) 2
(n =) 5
(hP =) ?

return info

(a =) 2
(n =) 2
(hP =) 2

return info

(a =) 2
(n =) 5
(hP =) ?

return info

(a =) 2
(n =) 2
(hP =) ?

return info

(a =) 2
(n =) 1
(hP =) 1

(retval =) 1

(retval =) 2

(retval =) 4

(retval =) 32

hP: short for halfPower

How Do We Keep Track?
41

¨  Many frames may exist, but computation occurs only in the top
frame
¤  The ones below it are waiting for results

¨  The hardware has nice support for this way of implementing
function calls, and recursion is just a kind of function call

Conclusion
42

Recursion is a convenient and powerful way to define functions

Problems that seem insurmountable can often be solved in a
“divide-and-conquer” fashion:

¤  Reduce a big problem to smaller problems of the same
kind, solve the smaller problems

¤  Recombine the solutions to smaller problems to form
solution for big problem

Important application (next lecture): parsing

2/12/14

8

Extra Slides
43

A cautionary note
44

¨  Keep in mind that each instance of the recursive
function has its own local variables

¨  Also, remember that “higher” instances are waiting
while “lower” instances run

¨  Do not touch global variables from within recursive
functions
¤ Legal … but a common source of errors
¤ Must have a really clear mental picture of how

recursion is performed to get this right!

Memoization (fancy term for “caching”)
45

Memoization is an optimization technique used to speed up
computer programs by having function calls avoid repeating the
calculation of results for previously processed inputs.

¤  First time the function is called, save result
¤ Next times, look up the result

n Assumes a “side-effect free” function: The function just
computes the result, it doesn’t change things

n  If the function depends on anything that changes, must
“empty” the saved results list

One thing to notice: Fibonacci
46

This way of computing the Fibonacci function is elegant but
inefficient

It “recomputes” answers again and again!

To improve speed, need to save
known answers in a table!

¤ One entry per answer
¤  Such a table is called a cache

fib(4)

fib(2)

fib(0) fib(1)

fib(3)

fib(0) fib(1)

fib(1) fib(2)

Adding Memoization to our solution

Before memoization:

47

static int fib(int n) {
 if (n <= 1) return n;
 return fib(n-2) + fib(n-1);
}

/** For 0 <= k < cached.size(), cached[k] = fib(k) */
static ArrayList<Integer> cached= new ArrayList<Integer>();

The list used to memoize

/** For 0 <= k < cached.size(), cached[k] = fib(k) */
static ArrayList<Integer> cached= new ArrayList<Integer>();

static int fib(int n) {
 if (n < cached.size()) return cached.get(n);
 int v;
 if (n <= 1)
 v= n;
 else v= fib(n-2) + fib(n-1);
 if (n == cached.size())
 cached.add(v);
 return v;
}

After Memoization

This works because of
definition of cached

48

This appends v to cached,
keeping cached’s
definition true

2/12/14

9

Notice the development process
49

¨  We started with the idea of recursion
¨  Created a very simple recursive procedure

¨  Noticed it will be slow because it wastefully recomputes the
same thing again and again

¨  We made it a bit more complex but gained a lot of speed in
doing so

¨  This is a common software engineering pattern

Why did it work?
50

¨  This cached list “works” because for each value of
n, either cached.get(n) is still undefined or has fib(n)

¨  Takes advantage of the fact that an ArrayList adds
elements at the end and indexes from 0

0 1 1 2 3

cached@BA8900, size=5

cached.get(0) = 0
cached.get(1) = 1 … cached.get(n) = fib(n)

Property of our code: cached.get(n) accessed after fib(n) computed

