
CS/ENGRD 2110
SPRING 2014
Lecture 5: Local vars; Inside-out rule; constructors
http://courses.cs.cornell.edu/cs2110

1

References to text and JavaSummary.pptx
2

¨  Local variable: variable declared in a method body
 B.10–B.11 slide 45

¨  Inside-out rule, bottom-up/overriding rule C.15 slide 31-32
and consequences thereof slide 45

¨  Use of this B.10 slide 23-24 and super C.15 slide 28, 33

¨  Constructors in a subclass C.9–C.10 slide 24-29
¨  First statement of a constructor body must be a call on another

constructor —if not Java puts in super(); C.10 slide 29

Homework
3

1.  Visit course website, click on Resources and then on Code
Style Guidelines. Study

 4.2 Keep methods short

 4.3 Use statement-comments …

 4.4 Use returns to simplify method structure

 4.6 Declare local variables close to first use …

Local variables
4

/** Return middle value of b, c, d (no ordering assumed) */
public static int middle(int b, int c, int d) {
 if (b > c) {
 int temp= b;
 b= c;
 c= temp;
 }
 // { b <= c }
 if (d <= b) {
 return b;
 }
 // { b < d and b <= c }
 return Math.min(c, d);
}

Parameter: variable
declared in () of
method header

middle(8, 6, 7)

b 8	
 d 7	
c 6	

Local variable:
variable

declared in
method body

temp ?	

All parameters and local variables
are created when a call is executed,
before the method body is executed.
They are destroyed when method
body terminates.

Scope of local variable
5

/** Return middle value of b, c, d (no ordering assumed) */
public static int middle(int b, int c, int d) {
 if (b > c) {
 int temp= b;
 b= c;
 c= temp;
 }
 // { b <= c }
 if (d <= b) {
 return b;
 }
 // { b < d and b <= c }
 return Math.min(c, d);
}

Scope of local variable (where it
can be used): from its declaration
to the end of the block in which it
is declared.

block

Principle about placement of declaration
6

/** Return middle value of b, c, d (no ordering assumed) */
public static int middle(int b, int c, int d) {
 int temp;
 if (b > c) {
 temp= b;
 b= c;
 c= temp;
 }
 // { b <= c }
 if (d <= b) {
 return b;
 }
 // { b < d and b <= c }
 return Math.min(c, d);
}

Principle: Declare a local variable
as close to its first use as possible.

Not good! No need for reader to
know about temp except when
reading the then-part of the if-
statement

Assertions promote understanding
7

/** Return middle value of b, c, d (no ordering assumed) */
public static int middle(int b, int c, int d) {
 if (b > c) {
 int temp= b;
 b= c;
 c= temp;
 }
 // { b <= c }
 if (d <= b) {
 return b;
 }
 // { b < d and b <= c }
 return Math.min(c, d);
}

Assertion: Asserting that b <= c
at this point. Helps reader
understand code below.

Bottom-up/overriding rule
8

toString() { … }	

Object	

Butterfly@20	

Butterfly	

toString()	

name “Beaut”

c	
 Butterfly@20	
Which method toString()
is called by 	

 c.toString() ?	

Overriding rule or���
bottom-up rule:���
To find out which is used,
start at the bottom of the
object and search upward
until a matching one is
found.	

Inside-out rule
9

Inside-out rule: Code in a construct can reference any names
declared in that construct, as well as names that appear in enclos-
ing constructs. (If name is declared twice, the closer one prevails.)

Person	

Person@a0	

n	

getNAndPop() {	

 return n + PersonPop;���
}	

Person	

Person@a1	

n	

getNAndPop() {	

 return n + PersonPop;���
}	

Person’s objects and static components	

PersonPop	

Parameters participate in inside-out rule
10

	

setN(String name) {	

	

 n= name;	

}	

Person	

Person@a0	

n	

	

setN(String n) {	

 	

 n= n;	

}	

Person	

Person@a0	

Parameter n “blocks”
reference to field n.

Doesn’t work right	

n

A solution: use this
11

	

setN(String n) {	

	

 this.n= n;	

}	

Person	

Person@a0	

n	

	

setN(String n) {	

 	

 this.n= n;	

}	

Person	

Person@a1	

n

Memorize: Within an object, this evaluates to the name of the object. 	

In object Person@a0, ���
this evaluates to Person@a0	

In object Person@a1, ���
this evaluates to Person@a1	

Person@a0.n is this variable	

About super
12

Within a subclass object,
super refers to the partition
above the one that contains
super.

toString() { … }	

	

ObjectName() { ���
 return super.toString();	

}	

Object	

Butterfly@20	

Butterfly	

toString()	

Because of the key-
word super, this
calls toString in the
Object partition.	

Calling a constructor from a constructor
13

Time@fa8
Time hr 9 min 5

… Time(int, int) Time (int)

public class Time
 private int hr; //hour of day, 0..23
 private int min; // minute of hour, 0..59

 /** Constructor: instance with h hours and m minutes */
 public Time(int h, int m) { …}

 /** Constructor: instance with m minutes … */
 public Time(int m) {
 hr= m / 60;
 min= m % 60;
 }
 …
}

Want to change body
to call first constructor

Calling a constructor from a constructor
14

Time@fa8
Time hr 9 min 5

… Time(int, int) Time (int)

public class Time
 private int hr; //hour of day, 0..23
 private int min; // minute of hour, 0..59

 /** Constructor: instance with h hours and m minutes … */
 public Time(int h, int m) { …}

 /** Constructor: instance with m minutes … */
 public Time(int m) {
 this(m / 60, m % 60);
 }
 …
} Use this (Instead of Time) to call another
constructor in the class.
Must be first statement in constructor body!

Initialize superclass fields first
15

Executive@a0
Object

name “G” start 1969

salary

10,000

Employee(String, int)
toString() getCompensation()

toString() …

Employee

Executive bonus

 getBonus() getCompensation()
 toString()

50,000

Class Employee contains info that
is common to all employees —
name, start date, salary, etc.

getCompensation gives the salary

Executives also get a bonus.
getCompensation is overridden to
take this into account

Could have other subclasses for
part-timers, temporary workers,
consultants, etc., each with a
different getCompensation

Without OO …
16

Without OO, you would write a long involved method:

public double getCompensation(…) {
 if (worker is an executive)
 { … }
 else if (worker is part time)
 { … }
 else if (worker is temporary)
 { … }
 else …

OO eliminates need for many of
these long, convoluted methods,
which are hard to maintain.

Instead, each subclass has its own
getCompensation.

End up with many more methods,
which are usually very short

/** Constructor: employee with name n, year hired d, salary s */
public Employee(String n, int d, double s) {
 name= n;
 start= d;
 salary= s;
}

Principle: initialize superclass fields first
17

Executive@a0
Object

name “G” start 1969

salary

Employee(String, int, double)

toString() …

Employee

10,000
Executive

bonus

 Executive(String, int, double)

50,000

Principle: initialize superclass fields first
18

Executive@a0

name start

salary

Employee(String, int, double)

Employee

Executive
bonus

 Executive(String, int, double)

/** Constructor: employee with name n, year hired d, salary s */
public Employee(String n, int d, double s)

/** Constructor: executive with name n, year hired d, salary of
 $50,000, bonus b */
public Executive(String n, int d,
 double s, double b)

Principle: In subclass constructor,
fill in the superclass fields first

How to do that if they are private?

Call constructor in superclass

Principle: initialize superclass fields first
19

Executive@a0

name start

salary

Employee(String, int, double)

Employee

Executive
bonus

 Executive(String, int, double)

/** Constructor: employee with name n, year hired d, salary s */
public Employee(String n, int d, double s)

/** Constructor: executive with name n, year hired d, salary of
 $50,000, bonus b */
public Executive(String n, int d,
 double s, double b) {

 Employee(n, d, 50000);
 bonus= b;
}

super

To call a superclass constructor,
use super(…)

/** Constructor: an instance with …*/
public C (…) {

 S0;
 S1;
 …
}

Principle: initialize superclass fields first
20

C@a0

C1(…)
C1

 C(…)
C

Java syntax: First statement of any
constructor you write must be a call
on another constructor
 this(…); or super(…);

Object
Object(…)

…

If you don’t put one in, Java inserts this one:

 super();

super();

