CS 211

Computers and Programming
Fall 2004

Prelim I Solutions

10/14/2004

1. (Types, 10 points)

Let r1 and 72 be variables that contain references to an object 0. An-
swer the following questions.

(a)
(b)
(c)

(1 point) The type of 71 can be either a class type or an interface
type. True or false? Explain briefly.

(1 point) The type of o can be either a class type or an interface
type. True or false? Explain briefly.

(2 points) Which of the following statements is true about the
types of r1 and 0? No explanation needed.
i. The type of 1 must be a super-type of the type of o.
ii. The type of 71 must be a sub-type of the type of o.
iii. There is no relationship in general between the type of 1 and
the type of o.

(2 points) Which of the following statements is true about the
types of 1 and 72?7 No explanation needed.
i. The type of r1 must be a super-type of the type of r2.
ii. The type of 1 must be a sub-type of the type of 2.
iii. There is no relationship in general between the type of 1 and
the type of r2.

For the rest of the questions, consider the downcasting expression
(Animal)ril, where Animal is assumed to be a class in the Java
program.

i. (1 point) Which of the following statements is true? No ex-
planation needed.
A. Downcasting is always legal, so this operation will never
throw an exception.
B. Downcasting is always illegal, so this operation will always
throw an exception.
C. This downcasting operation will execute correctly only if
the type of object o is a subtype of Animal.
ii. (1 point) Which of the following statements is true? No ex-
planation needed.

iii.

1v.

Answers:

The type of object o remains unchanged by the downcast-
ing operation.
The type of object 0 becomes Animal after the downcast-
ing operation.

. You do not have enough information to say whether the

type of object o will be changed by the downcasting op-
eration.

(1 point) Which of the following statements is true? No ex-
planation needed.

A.

B.

C.

The type of reference r1 becomes Animal after this down-
casting operation.
The type of reference r1 is unchanged after this down-
casting operation.
You do not have enough information to say whether the
type of r1 will be changed by the downcasting operation.

(1 point) Which of the following statements is true? No ex-
planation needed.

A.

B.

The type of reference r2 becomes Animal after this down-
casting operation.
The type of reference r2 is unchanged after this down-
casting operation.

. You do not have enough information to say whether the

type of reference r2 will be changed by the downcasting
operation.

Total: 10 points

(a) (1 point) True. The purpose of subtyping is to allow references to
a general supertype. (No credit given for no explanation).

(b) (1 point) False. You can’t instantiate an interface because the
methods are not implemented. (No credit given without explana-
tion).

(c) (2 points) The type of 1 must be a super-type of the type of o.

(d) (2 points) There is no relationship in general between the type of
r1 and the type of r2.

ii.

1il.

1v.

(1 point) This downcasting operation is legal only if the type
of object o is a subtype of Animal.

(1 point) The type of object o remains unchanged by the
downcasting operation.

(1 point) The type of reference r1 is unchanged after this
downcasting operation.

(1 point) The type of reference 72 is unchanged after this
downcasting operation.

2. (Induction, 20 points)

Use induction to prove the following results. Your answers must state
clearly (i) the base case or cases, (ii) the inductive hypothesis, (iii) the
inductive step, and (iv) the conclusion.

(a)

(10 points)
(1-3HA=3)..1—25)="5"forn>2
(b) (10 points)

Show that

Where m and n are non—negative integers. Hint: you can do an
induction on either m or n, but the induction on n is easier.

Answer:

(a) (10 points)

e (2 points) Base case: forn =2, (1-1/4) = 3/4 = (2+1)/2*2
= 3/4.

e (2 points) Inductive hypothesis: assume the result is true for
some integer k > 2.

e (6 points) Inductive step:

S [C S WG

(
L= = Dl = 30—)

(k42)
2(k+1)
as desired.
e (2 points) Conclusion:

(1= D= 51—) =5 forn > 2
(b) (10 points)

e (2 points) Base case:
ml _ (m+1)! _ m!

0 — 0!(m+1) — 0

e (2 points) Inductive hypothesis: for some integer £ > 0
! (ml)! (m+k)! _ (m+k+1)!
ot et T = ey

e (6 points) Inductive step:

m! + (m+1)! 4o+ (m,—gl—'k)! + (m+k+1)!

0! 1! ! k+1!
_ (m4E+1)! (m+k+1)!
= Bm+D) T (kL)
(m+k+2)!
. (k41)(m+1)
. COHC](IISIO;]I s ()
m! m+1)! m+n)! _ (m4n+41)!
ot et = l(mt1) for all m,n > 0.

This page intentionally left blank.

3. (Recursion and Lists, 40 points)

(a)

(20 points) Write a recursive public class method that takes a
list of Objects 1c and a reference to an Object o as arguments,
removes the first occurrence of o, if it exists, in 1c, and returns a
reference to the remaining list.

The list 1c is to be modified in place. Use the equals method to
compare the object o with elements of the list 1c.

Your method must have the following signature.

public static ListCell delete(ListCell 1, Object o);
The ListCell class is reproduced at the end of the exam for your
convenience. You may NOT use the List class discussed in lecture.
No credit will be given if you create a new list; that s, if you
allocate any new ListCell objects.

(20 points) Write an iterative public class method that takes a
doubly-linked list of Objects d1 (constructed from the DLLCell
class discussed in lecture) and a reference to an Object o as ar-
guments, removes the first occurrence of o, if it exists, in d1, and
returns a reference to the remaining list.

The list d1 is to be modified in place. Use the equals method to
compare the object o with elements of the list d1.

Your method must have the following signature.
public static DLLCell delete(DLLCell dl, Object o);

The DLLCell class is reproduced at the end of the exam for your
convenience. No credit will be given if you create a new list; that
18, if you allocate any new DLLCell objects.

(a) No credit given if new ListCell objects created.

public static ListCell delete(ListCell 1lc, Object o) {
if (1c == null)
return null;
//5 points for base case

if (1lc.getDatum() .equals(o))
return lc.getNext();
// 5 points for other base case
// -2 points for lc.datum
// -1 point for ==
// -1 point for accessing null pointer

else {
1c.setNext(delete(lc.getNext(), Object 0));
return 1c;
}
// 10 points for recursive case
// -3 for incorrect return value
// -5 for no return value
// -2 for incorrect setNext value
// -3 for incorrect recursive call

(b) You will probably get many solutions, so I suggest something like
this.

Does code work correctly for null dl17 2 points

Does code work correctly if Object o does not occur in list dl17 2
points

If object o does occur in the list, are the next and previous
fields set correctly to splice cell out? 4 points

Are next and previous fields set correctly when cell being spliced
out is the first cell or the last cell? 4 points

Is the right list returned if the cell being spliced out is the
first cell? 4 points

Is the right list returned otherwise? 4 points

public static DLLCell delete(DLLCell dl, Object o) {
//walk down list to find first occurrence of o if any
DLLCell cursor = dl;
while ((cursor !'= null) && !(cursor.getDatum().equals(o))) {
cursor = cursor.getNext();

}

if (cursor == null)
//did not find o in list
return dl;
//otherwise we found an occurrence of o
//set fields of cells before and after cell at cursor
DLLCell before = cursor.getPrevious();
DLLCell after = cursor.getnext();
if (before != null) before.setNext(cursor.getNext());
if (after != null) after.setPrevious(cursor.getPrevious());

if (cursor == dl1)
//cursor is at first cell, so get rid of first cell
return dl.getNext();

else return dl;

10

11

This page intentionally left blank.

12

4. (Trees and lists, 30 points)

A full binary tree is a special case of a binary tree which has at least
one node, and in which every node has either 0 or 2 children (i.e., no
node can have just one child). For example, the tree in Figure 1(a) is a
full binary tree while the binary tree in Figure 1(b) is not a full binary
tree.

(a) (15 points) Prove inductively that a full binary tree must have an
odd number of nodes. Your proof must clearly state the base case,
inductive hypothesis, inductive step and conclusion. Hint: use an
induction on the height of the tree.

(b) (15 points) Consider full binary trees where Integer values are
stored in each tree cell. Draw all possible full binary trees whose
pre-order traversal produces the following integer sequence: 10 12
92218 76 16.(Hint: there is more than one such full binary tree).

@) @)
N N
O 60\() O 60
(a) Full binary tree (b) Not a full binary tree

Figure 1: Full and non-full binary trees

13

Answer:

(a) (15 points) Note: 1 point was deducted for each missing label. A
student who misunderstood the definition and claimed that a full
binary tree has I , 2 nodes received at most 7 points.

e (2 points) Base case: A full binary tree of height 0 has exactly
one node, the root. Since one is an odd number, this proves
the base case.

e (4 points) Inductive hypothesis: Assume that all full binary
trees of height less than or equal to & (for some £ > 0) have an
odd number of nodes. (2 points for weak inductive hypothesis
and 2 points for strong inductive hypothesis).

e (9 points) Inductive step. There were many different possible
answers for this, one of which was given below. In all of
them, 2 points were deducted for failing to explicitly use the
inductive hypothesis. The remaining 7 points were allocated
based on clarity and correctness.

One possible inductive inductive step is given as follows:
Consider a full binary tree of height k + 1.

Since the height of the tree is greater than 0, the root has a
non-empty left subtree or a non-empty right subtree.

Since the tree is a full binary tree (either each node has 0 or 2
children), both the left and the right subtrees are non-empty.
The left subtree is a full binary tree since it has at least one
node (i.e., it is non-empty) and all nodes have either 0 or 2
children (since they are also nodes of the original full binary
tree). Similarly, the right subtree is also a full binary tree.
The left subtree has height at most & since the entire tree has
height k£ + 1 and the depth of the root of the left subtree is 1.
Similarly, the height of the right subtree is at most k.

By induction hypothesis, the left subtree and the right subtree
each have an odd number of nodes.

The total number of nodes in the tree is the sum of (1) the
number of nodes in the left subtree of the root, (2) the number
of nodes in the right subtree of the root, and (3) 1 (the root
itself). Since (1) and (2) are odd, their sum is even, and
adding 1 to this produces an odd number. Hence the number

14

of nodes in the full binary tree of height £ + 1 is odd.
e Conclusion: A full binary tree has an odd number of nodes.

15

(b) (15 points)
Three points were awarded for each correct tree. If more than five
trees were drawn, then two points was deducted for each additional
tree.

16

class ListCell {

protected Object datum;
protected ListCell next;

public ListCell(Object o, ListCell n){
datum = o;
next = n;

}

public Object getDatum() {
return datum;

}

public ListCell getNext(D{
return next;

}

public void setDatum(Object o) {
datum = o;

}

public void setNext(ListCell 1){
next = 1;

}

public String toString(){

String rString = datum.toString();

if (next == null) return rString;

else return rString + " " + next.toString();
}
}

17

class DLLCell {

protected Object datum;
protected DLLCell next;
protected DLLCell previous;

public DLLCell(Object o, DLLCell n, DLLCell p){

datum = o;
next = n;
previous = p;

}

public DLLCell(Object 0){
datum = o;

}

public Object getDatum() {
return datum;

}

public DLLCell getNext(){
return next;

}

public DLLCell getPrevious(){
return previous;

}

public void setDatum(Object o) {
datum = o;
}

public void setNext(DLLCell d41) {
next = dl;
}

public void setPrevious(DLLCell d1) {
previous = dl;

}

18

Course Feedback

You can detach this sheet from the exam and hand it to a TA to maintain
confidentiality.

1. How many hours per week are you spending on the homework for this
course?

2. Do you attend lecture regularly? What can we do to improve the
lectures?

3. Do you attend section regularly? What can we do to improve section?

4. Do you see the consultants for assistance? What can we do to improve
consulting?

19

