
CS211 Spring 2007

Final Exam

May 14, 2007

Solutions

Instructions

Write your name and Cornell netid above. There are 9 questions on 10 numbered
pages. Check now that you have all the pages. Write your answers in the boxes
provided. Use the back of the pages for workspace. Ambiguous answers will be
considered incorrect. The exam is closed book and closed notes. Do not begin until
instructed. You have 21

2
hours. Good luck!

1 2 3 4 5

Score
/14 /6 /10 /14 /8

Grader

6 7 8 9 Σ

Score
/10 /8 /15 /15 /100

Grader



May 14, 2007 CS211 Final Exam Page 1 of 10

1. (14 points) Fill in the following table of asymptoptic complexities for each of the
given data structures and operations.

Sorted singly-
linked list

Sorted ArrayList Sorted doubly-
linked list

finding the
smallest element

O(1) O(1) O(1)

finding the largest
element

O(n) O(1) O(1)

searching for a
given element

O(n) O(log n) O(n)

deleting a given
element

O(1) or O(n) O(n) O(1)

finding the
median

O(n) O(1) O(n)

In the sorted singly-linked list, assume the elements are ordered from smallest to
largest, and there is no tail pointer. For deleting a given element, do not include
the cost of finding it.



May 14, 2007 CS211 Final Exam Page 2 of 10

2. (6 points) For each of the following sets of class definitions, say what would be
printed by the program

C x = new C();
System.out.println(x.foo());

If the program gives an error, say what that error is.

(a) abstract class A {
abstract int foo();
abstract int bar(A a);

}
class B extends A {

int bar(A a) { return 2; }
int foo() { return bar(this); }

}
class C extends B {

int bar(A a) { return 3; }
}

3

(b) abstract class A {
int bar(A a) { return 0; }
int bar(B b) { return 1; }
int bar(C c) { return 2; }

}
class B extends A {

int bar(A a) { return 3; }
int bar(B b) { return 4; }
int bar(C c) { return 5; }

}
class C extends B {

int foo() { return ((A)this).bar((A)this); }
}

3



May 14, 2007 CS211 Final Exam Page 3 of 10

3. (10 points) Say we are given a weighted directed graph G with strictly positive
edge weights w(u, v) and a source node s in G. We would like to modify Dijkstra’s
shortest-path algorithm to produce a count of the number of different minimal-
length paths from s to v for every node v.

Recall that Dijkstra’s algorithm builds a set X of nodes incrementally, starting
with X = {s}. Normally, the algorithm maintains a value D(v) for each node v
giving the length of the shortest path from s to v through only intermediate nodes
in X.

We will modify the algorithm to maintain an extra value N(v) giving the number
of paths of length D(v) from s to v through only intermediate nodes in X.

Describe how to initialize D(v) and N(v) and how to update the values of D(v)
and N(v) when a new node u is added to X. Describe your modifications in words,
do not write any code.

Initialize D(v) as in Dijkstra’s algorithm. Initialize N(s) = 1, N(v) = 1 for all
edges (s, v), and N(v) = 0 for all other nodes.

To update N when a node u is added to X, for each edge (u, v),

• if D(u) + w(u, v) < D(v), set N(v) = N(u);

• if D(u) + w(u, v) = D(v), set N(v) = N(u) + N(v);

• if D(u) + w(u, v) > D(v), do nothing.

Update D(v) for all edges (u, v) as in Dijkstra’s algorithm.



May 14, 2007 CS211 Final Exam Page 4 of 10

4. (14 points)

(a) What is a spanning tree in an undirected graph? Give an accurate definition.

A spanning tree is a connected subgraph that contains all the nodes but has no
cycles.

(b) Do Prim’s and Kruskal’s algorithms still work if the edge weights are allowed
to be negative?
yes

Suppose that we have already computed a minimum-weight spanning tree M in
a weighted undirected graph G. Now suppose we want to either (c) increase the
weight of one of the edges in M or (d) decrease the weight of one of the edges
of G not in M . In either case M may no longer be of minimum weight, and we
may have to compute a new minimum-weight spanning tree. Describe linear-time
(O(n + m)) algorithms for each of these two problems. For (c), assume that the
edges not in M are sorted by weight. Say what to do in high-level terms, no code.

(c)

Let (u, v) be the edge in M whose weight increased. Using DFS or BFS, mark
all the nodes reachable from u in M without going through v and call this set
A. Similarly, mark all the nodes reachable from v without going through u and
call this set B. Now go through the sorted list of edges not in M and find the
smallest weight edge e connecting a node in A with a node in B. If the weight
of e is less than that of (u, v), replace (u, v) in M with e.

(d)

Let (u, v) be the edge not in M whose weight decreased. Using DFS or BFS, find
the unique simple path from u to v in M . Find an edge e of maximal weight on
that path. If the weight of e is greater than that of (u, v), replace e in M with
(u, v).



May 14, 2007 CS211 Final Exam Page 5 of 10

5. (8 points) Draw the final result after inserting keys 5, 19, 28, 15, 20, 17, 10, 33
into a hash table with collisions resolved by (a) chaining, (b) linear probing. Let
the table have eight slots with addresses starting at 0, and let the hash function
be h(k) = k mod 8.

(a)

0:
1: 33 17
2: 10
3: 19
4: 20 28
5: 5
6:
7: 15

(b)

0: 33
1: 17
2: 10
3: 19
4: 28
5: 5
6: 20
7: 15



May 14, 2007 CS211 Final Exam Page 6 of 10

6. (10 points) True or false?

(a) T F In Java, each event such as a button click or keystroke spawns a new
thread to handle the event.

(b) T F Insertion sort, selection sort, and bubblesort all have the same asymp-
totic worst-case complexity.

(c) T F A planar graph is one with no arrowheads on the edges.

(d) T F Dijkstra’s algorithm can be used to find a minimum spanning tree.

(e) T F Static methods may not refer to this.

(f) T F If class B is a subclass of class A and A implements interface C, then
B automatically implements C even if it does not provide explicit
implementations of the methods of C.

(g) T F In a Java GUI, a Container would use a LayoutManager to organize
the layout of its Components.

(h) T F When implementing quicksort, the first element of an interval is al-
ways a good choice for the pivot.

(i) T F At runtime, a successful downcast from type A to type B changes the
dynamic type of the object from A to B.

(j) T F n2 log n + n(log n)2 is O(n2(log n)2).



May 14, 2007 CS211 Final Exam Page 7 of 10

7. (8 points) Consider the following complete binary tree.

����
���� ����

��������
�� @@

�� AA

76

6 63

10 9

(a) The tree represents a heap implementing a priority queue, but the heap is
in an inconsistent intermediate state; a priority queue operation is currently
being performed, but the operation is not yet finished. Which operation?

Extract min.

(b) Draw the original tree before the operation started and the final tree after
the operation is complete. If there are several possibilities, just pick one.

Before:

����
���� ����

������������
�� @@

�� ��AA

x

6 63

10 9 76

x can be any value ≤ 6.

After:

����
���� ����

��������
�� @@

�� AA

6

9 63

10 76



May 14, 2007 CS211 Final Exam Page 8 of 10

8. (15 points) Recall that a binary tree is a tree in which each node has 0, 1, or 2
children. There are exactly five binary trees with three nodes, namelyss sA

A
�

�

s ss
A
A
�

�

s s s
A
A
A
A

ss s
�

�
A
A

sss
�

�
�

�

(a) Write a recursive method int nTrees(int n) that calculates the number of
different binary trees with n nodes for n ≥ 0. (Hint. A binary tree with n
nodes consists of a root node, a left subtree with m nodes, and a right subtree
with n− 1−m nodes for some 0 ≤ m ≤ n− 1.)

public static int nTrees(int n) {
if (n == 0) return 1;
int s = 0;
for (int m = 0; m < n; m++) {

s += nTrees(m)*nTrees(n-1-m);
}
return s;

}

(b) Your recursive algorithm is probably quite inefficient, because during the
course of the computation on a large value of n, it calls itself on smaller
values of n many times over. It can be made much more efficient by caching
values already computed in a data structure and just consulting the data
structure to see if the value has already been computed. Describe briefly how
and where you would modify your code to take advantage of this idea. Say
what data structure(s) you would use and how they would be defined in Java.

Cache the answers in an ArrayList<Integer> ans. Here ans should be a static
field defined outside the method nTrees, but in the same class. Before calling
nTrees the first time, set the size of ans to 0. In the first line of nTrees(n),
check whether n < ans.size(). If so, just return the value that is there; it has
already been computed. If not, compute the value recursively as in part (a), but
before returning it, add it to ans.

The difference is remarkable. Calculating nTrees(10) without caching requires
59049 recursive calls as compared to 111 with caching.



May 14, 2007 CS211 Final Exam Page 9 of 10

9. (15 points) Let T (n) be the number of binary trees with n nodes that you calculated
in the previous exercise. Show that T (n) is exponential by proving by induction
that there exists c > 1 such that T (n) ≥ cn−1 for all n ≥ 0. (Hints. Use the
recurrence T (n) =

∑n−1
m=0 T (m) · T (n− 1−m). Take c =

√
2. Do two base cases.

Use strong induction.)

Let c =
√

2 and let T (n) be the unique solution to the recurrence T (0) = 1 and
T (n) =

∑n−1
m=0 T (m) ·T (n−1−m) for n ≥ 1. We show that T (n) ≥ cn−1 for all n ≥ 0.

The proof is by induction on n.

Basis: n = 0 and n = 1. T (0) = 1 ≥ c−1 and T (1) = 1 ≥ c0.

Induction step: n ≥ 2. Unwinding the recurrence once,

T (n) =
n−1∑
m=0

T (m) · T (n− 1−m)

≥
n−1∑
m=0

cm−1 · cn−1−m−1 by the strong induction hypothesis

=
n−1∑
m=0

cm−1+n−1−m−1

= n · cn−3

≥ cn−1 since n ≥ c2.



May 14, 2007 CS211 Final Exam Page 10 of 10

End of Exam


