
Cornell University
Computer Science 211

Final Examination 19 May 2006

Solutions
1. True/false [20 pts] (parts a–j)

Each question is worth 2 points.

(a) The essential property of a good user interface is that it is easy for programmers to implement.

False

(b) DFS takesO(|E| + |V |) time if the graph is represented as an adjacency matrix.|E| is the number of
edges and|V | is the number of vertices(nodes).

False

(c) The worst-case performance of looking up an element in a hash table isO(n), wheren is the number of
elements.

True

(d) Binary search trees are faster than hash tables in practice.

False

(e) Trees and singly-linked lists are both DAGs.

True

(f) Binary search requires linear time in the worst case.

False

(g) Insertion sort has worst-case running time that isO(n lg n).

False

(h) Swing Listeners are an example of the Observer pattern.

True

(i) In the worst case, both breadth-first and depth-first search can require state that isO(|V |) in size.

True

(j) Breadth-first search uses a stack.

False

2. Choosing data structures [16 pts] (parts a–d)

Check the best data structure for solving each of the following problems.

(a) [4 pts] You have a large collection of objects representing vehicles with New York State license plates.
You need to be able to look up a vehicle given its license plate.

X Hash table
Linked list
Tree
Binary search tree
Array
Resizable array

1

(b) [4 pts] You want to keep track of appointments and other events organized by their time and date. It is
important to be able to efficiently find all the events between a starting time/day and an ending time/day.

Hash table
Linked list
Doubly-linked list
Binary heap

X Binary search tree
Array

(c) [4 pts] You are writing a program that watches packets going by on the network and records the IP
address of the host machine sending each packet, for later processing. It’s important that your program not
pause for any significant amount of time because it might miss some packets.

Hash table
X Linked list

Graph
Binary search tree
Array
Resizable array

(d) [4 pts] You are implementing an interactive program development environment (like Eclipse) for the
Java language. You need a data structure that keeps track of all the classes and packages and lets you find,
for example, the set of classes in a given package or its subpackages, or classes nested inside a given class.

Linked list
X Tree

Binary search tree
Binary heap
Array
Resizable array

3. Asymptotic complexity and binary search trees [18 pts] (parts a–c)

(a) [4 pts] Consider a perfectly balanced binary tree of heighth. What is the largest possible number of
nodes it can contain? Be precise.

Answer:

2h+1 − 1. Recall that the height of a tree is the length of the longest path from the root to any leaf.

(b) [8 pts] Consider the functionf(n) = a lg(n + b), wherea andb are positive constants. Show that this
function isO(lg n). (Hint: considern ≥ max(b, 2))
Answer:
We need to show that there exists somek andn0 such thata lg(n + b) ≤ k lg n for all n ≥ n0. Consider
n0 = max(b, 2) andk = 2a. Thenlg(n + b) ≤ lg 2n = 1 + lg n. Soa lg(n + b) ≤ a lg n + a, and since
1 ≤ lg n, this is bounded by2a lg n = k lg n, as desired.

(c) [6 pts] (*) Let us say that a binary search tree isroughly balancedif the depth of the deepest node is
no more than twice the depth of the least deep node that is missing one or both of its children (i.e., it has
null instead of a child). Show that in such a tree (ared-black treeis one example), binary search takes time
O(lg n), wheren is the number of nodes in the tree. You may take the result of part (b) as given. (Hint:
how many nodes have a depth less or equal toh/2?)

Answer:
Binary search takes time that isO(h). So we need to show thath is O(lg n). Consider the set of nodes
that are at a depth ofh/2 or less. These nodes form a perfectly balanced tree, and therefore there must
be2h/2+1 − 1 of them. Therefore, we know that2h/2+1 − 1 ≤ n, soh ≤ 2 lg(n + 1) − 2. But by part
(b), 2 lg(n + 1)− 2 is O(lg n), soh is too.

2

4. Graphs [14 pts] (parts a–c)

Consider the following graph:

1 3 6

5

7

8
4

9

2

(a) [5 pts] Suppose we perform a breadth-first search of this graph starting at node 4. Which nodes could
be the last node visited by the search? Explain briefly.

Answer:
The nodes 1 and 2 are the farthest, at distance 3. So one of these two must be visited last regardless of
how the BFS is done.

(b) [5 pts] Suppose we perform a recursive depth-first search of this graph starting from 4. From any given
node, we visit its successors in ascending order of their value. In what order are the nodes visited (marked
gray)?

Answer:

4, 5, 3, 1, 2, 6, 8, 7, 9

(c) [4 pts] Now, give the topological sort of the nodes corresponding to the DFS of part 4(b).

Answer:
If we use the depth-first search just given to do the topological sort, we end up with the following:

4, 9, 5, 7, 3, 6, 8, 2, 1

Many people gave a topological ordering that didn’t correspond to the DFS of part (b). Partial credit
was assigned in these cases.

5. Specification [20 pts] (parts a–e)

Suppose we are given a data abstraction representing a day of the year, with the following interface:

3

/* A Date is a day of a unspecified year. For example, May 17 or
* February 29.
*/
class Date {
/** Make a new Date object with the specified month and day. */

Requires: "month" must be between 1 and 12.
"day" must be between 1 and the number of
days in that month (29 in case of February).

public Date(int month, int day) { ... }
/** The month (1-12). */
public int month() { ... }
/** The day (1-31). */
public int day() { ... }
/** A human readable representation, e.g., "May 17" */
public String toString() { ... }
/** The next day of the year. */
public Date tomorrow() { ... }
/** The previous day of the year. */
public Date yesterday() { ... }

}

(a) [3 pts] Which methods are creators? Which are observers? Which are mutators? Is this a mutable or an
immutable data abstraction?
Answer:
Creators:Date, tomorrow, yesterday.
Observers:month, day, tomorrow, yesterday, toString
Mutators: none

This is an immutable data abstraction.

(b) [4 pts] The methodstomorrow andyesterday fail to specify some behavior, and furthermore, they
don’t consider the possibility of leap years. Change the signature and specification of thetomorrow
method to correct these problems. (You have some flexibility here; all reasonable solutions will be ac-
cepted).

Answer:

/** Creates a new Date representing the next day
of the year. Requires that the current day is
not December 31. For February 28, the next day
is February 29 if the year is a leap year,
March 1 otherwise.
@param leap_year whether the year is a leap year.

*/
public Date tomorrow(boolean leap_year) { ... }

Some people simply assumed that it was a leap year. But this violated the original intent of the data
abstraction, so it wasn’t a good solution.

(c) [2 pts] Now, suppose we want to implement this class with just a single integer field representing the
number of days since January 1, counted according to a leap year.

// The number of days elapsed since the beginning of a leap year,
// inclusive. Thus, January 1 is represented by 1 and December 31, by 366.

private int day_count;

What, if anything, is the representation (data structure) invariant for this class?

Answer:

The invariant is thatday count must be between 1 and 366.

4

(d) [5 pts] Implement the methodtomorrow using the representation of part 5(c) and your specification.
You may use existing methods and you may define additional private methods and private constructors.

Answer:

private Date(int c) { day_count = c; }
public Date tomorrow(boolean leap_year) {
Date ret = new Date(day_count + 1);
if (!leap_year && day_count == 59)

ret.day_count = 61;
return ret;

}

If you made December 31 wrap around intomorrow(), you needed to check for that too.

(e) [6 pts] (*) Suppose we wanted to define a subclass ofDate that also kept track of the year, called
YearDate. We could add a field for that:

class YearDate extends Date {
private int year;
...

}

Show how to implement the following without changing the superclass:

• A constructorYearDate(int month, int day, int year)

• The methodString toString().

• A methodYearDate tomorrow() that returns the next day, increasing the year if necessary. You
may assume a functionis leap year(int year) is already implemented for you:

/** Is this a leap year in the Gregorian calendar. */
boolean is_leap_year(int year) {
return (year%4 == 0) && (year%100 != 0) || (year%400 == 0);

}

Answer:

YearDate(int month, int day, int year) {
super(month, day);
this.year = year;

}
String toString() {
return super.toString() + ", " + year;

}
YearDate tomorrow() {

Date d = tomorrow(is_leap_year(year));
if (d.month() == 1 && d.day() == 1) {
return new YearDate(d.month(), d.day(), year+1);

} else {
return new YearDate(d.month(), d.day(), year);

}
}

6. Recursion and Induction [12 pts] (parts a–b)

We are using this list data structure:

class ListNode<T> {
T element;
ListNode<T> next;

}

5

Given a list of integers, we will say that an integer is “late” if its value is less than its index in the list, considering
the first list element to have index zero. For example, in a list containing the elements 1, 3, 7, 2, 10, 5, 4, the late
elements would be 2 and 4. The element 5 is not late, because it is at index 5.

(a) [6 pts] Use recursion to write a static methodlateElements that operates on aListNode<Integer>
and returns a newly created list containing all its late elements. You may define helper methods.

Answer:

ListNode<Integer> lateElements(ListNode<Integer> elems) {
return lateN(0, elems);

}
/** Return a list of the elements whose value is less than
* their index plus n */
ListNode<Integer> lateN(int n, ListNode<Integer> elems) {
ListNode<Integer> rest;
if (next == null) rest = null;
else rest = lateN(n+1, elems.next);
if (elems.element < n) {
ListNode<Integer> ret = new ListNode<Integer>();
ret.element = element;
ret.next = rest;
return ret;

}
return rest;

}

(b) [6 pts] (*) Now write an proof that your implementation works, using induction. Be sure to clearly state
both what you are proving and your induction hypothesis. (Hint: Your induction hypothesis will likely be
more general than the statement that you are proving.)

Answer:
We want to prove thatlateElements works. Assuming thatlateN works as described by its specification,
lateElements must work because zero plus the index is equal to the index. but we need to show thatlateN
works as advertised.

The statement to prove is thatlateN(m,elems) returns a newly created list containing all the elements whose
value is less thanindex+m. We will prove this by induction on the length of the list, which we will calln. The
induction hypothesis is that on a list of lengthn, lateN(m,elems) returns a newly created list containing all
the elements whose value is less thanindex+m.

The base case for the induction isn = 0, an empty (null) list. In this case it correctly returns an empty list.

In the inductive step, we assume thatlateN works correctly for a list of lengthn, wheren is some integer
greater than or equal to 0. Our goal is to prove that it works for a list of lengthn + 1. Since length of the
incoming list isn + 1 ≥ 1, we know we don’t returnnull immediately. The call tolateN is onelems.next,
which is a list of lengthn. So by the induction hypothesis, we know thatrest contains the elements in the list
that starts atelems.next and whose value is less than the index in that list (call iti), plusm + 1. But the
index in that list is one less than the index according to the current list (call itj). Therefore, if the value of an
element is less thani+ m+1, it is less thanj + m. So the recursive call returns a newly created list containing
all the late elements in the rest of the list.

In the remainder of the method, if the current element is less thann, its value is less than its index (0) plusn,
so it is prepended to the returned list. Otherwise, the current element should not be included in the result list,
and the listrest can be returned directly.

6

