
This recitation

1

• An interesting point about A3: Using previous methods to
avoid work in programming and debugging. How much time
did you spend writing and debugging prepend?!

• Enums (enumerations)!

• Generics and Java’s Collection interfaces and classes

How to use previous methods in A2

2

The A2 handout contained this:

Did you read that? Think about it? Attempt it?

Further guidelines and instructions!!
“Note that some methods that you have to write …. Also,
in writing methods 4..7, writing them in terms of calls!
on previously written methods may save you time.”

A lesson in:!
1. Reading carefully, wisely.!
2. Thinking about what methods do, visualizing what they do.

About enums (enumerations)

3

An enum: a class that lets you create mnemonic names for
entities instead of having to use constants like 1, 2, 3, 4!
!
The declaration below declares a class Suit.!
After that, in any method, use Suit.Clubs, Suit.Diamonds, etc.
as constants.

public enum Suit {Clubs, Diamonds, Hearts, Spades}

could be private,!
or any access
modifier

new!
keyword

The constants of the class
are Clubs, Diamonds,
Hearts, Spades

public enum Suit {Clubs, Diamonds, Hearts, Spades}

4

Clubs Suit@0

Diamonds Suit@1

Hearts Suit@2

Spades Suit@3

Suit@0
Suit

Suit@2
Suit

Suit@3
Suit

Suit@1
Suit

Clubs, Diamonds,
Hearts, Spades!
Are static variables of
class enum

Four static final variables that contain pointers to objects

5

Testing for an enum constant

5

public enum Suit {Clubs, Diamonds, Hearts, Spades}

Suit s= Suit.Clubs;!
Then!
s == Suit.Clubs is true s == Suit.Hearts is false

switch(s) {!
 case Clubs:!
 case Spades:!
 color= “black”; break;!
 case Diamonds:!
 case Hearts:!
 color= “red”; break;!
}

Can use a switch statement

Type of s is Suit.!
!
Inside the switch,
you cannot write
Suit.Hearts instead
of Hearts

6

Miscellaneous points about enums

public enum Suit {Clubs, Diamonds, Hearts, Spades}

1. Suit is a subclass of Enum (in package java.lang)

This declaration is shorthand for a class that has a constructor,!
four constants (public static final variables), a static method, and
some other components. Here are some points:

2. It is not possible to create instances of class Suit, because its
constructor is private!

3. It’s as if Clubs (as well as the other three names) is declared
within class Suit as!
 public static final Suit Clubs= new Suit(some values);

You don’t care what values

Miscellaneous points about enums

7

public enum Suit {Clubs, Diamonds, Hearts, Spades}

4. Static function values() returns a Suit[] containing
the four constants. You can, for example, use it to
print all of them:!
 for (Suit s : Suit.values())!
 System.out.println(s);

Output:!
Clubs!
Diamonds!
Hearts!
Spades

toString in object Clubs returns the
string “Clubs”

Can save this array in a static variable and use it over and over:!

 private static Suit[] mine= Suit.values();

Miscellaneous points about enums

8

public enum Suit {Clubs, Diamonds, Hearts, Spades}

5. Static function valueOf(String name) returns the
enum constant with that name:!
 Suit c= Suit.valueOf(“Hearts”);

After the assignment,
c contains (the name
of) object Hearts

c Suit@2
Suit@2

SuitThis is the object
for Hearts:

Miscellaneous points about enums

9

public enum Suit {Clubs, Diamonds, Hearts, Spades}

6. Object Clubs (and the
other three) has a function
ordinal() that returns it
position in the list

This declaration is shorthand for a class that has a constructor,!
four constants (public static final variables), a static method, and
some other components. Here are some points:

We have only touched the surface of enums. E.g. in an enum
declaration, you can write a private constructor, and instead
of Clubs you can put a more elaborate structure. All this is
outside the scope of CS2110.

Suit.Clubs.ordinal() is 0!
Suit.Diamonds.ordinal() is 1

10

Package java.util has a bunch of classes called the
Collection Classes that make it easy to maintain sets
of values, list of values, queues, and so on. You
should spend some time looking at their API
specifications and getting familiar with them.!
!
!
Remember:!
A set is a bunch of distinct (different) values. No
ordering is implied!
A list is an ordered bunch of values. It may have
duplicates.

11

Interface Collection: abstract methods for
dealing with a group of objects (e.g. sets, lists)

Abstract class AbstractCollection: overrides some
abstract methods with methods to make it easier to
fully implement Collection

AbstractList, AbstractQueue, AbstractSet, AbstractDeque
overrides some abstract methods of AbstractCollection with
real methods to make it easier to fully implement lists,
queues, set, and deques

Next slide contains classes that you should become familiar
with and use. Spend time looking at their specifications.
There are also other useful Collection classes

12

Class ArrayList extends AbstractList: An object is a growable/
shrinkable list of values implemented in an array

Class Arrays: Has lots of static methods for dealing
with arrays —searching, sorting, copying, etc.

Class HashSet extends AbstractSet: An object maintains a
growable/shrinkable set of values using a technique called
hashing. We will learn about hashing later.
Class LinkedList extends AbstractSequentialList: An object
maintains a list as a doubly linked list

Class Stack extends ArrayList: An object maintains LIFO
(last-in-first-out) stack of objects

Class ArrayList extends AbstractList: An object is a
growable/shrinkable list of values implemented in an array.
An old class from early Java

ArrayList

13

ArrayList v= new ArrayList ();

ArrayList@x1

ArrayList

Object

defined in package java.util

Fields that!
contain a list of objects!
(o0, o1, …, osize()-1)

ArrayList () add(Object)!
get(int) size()!
remove(…) set(int, Object)!
…

v ArrayList@x1

An object of class ArrayList
contains a growable/shrinkable
list of elements (of class Object).
You can get the size of the list,
add an object at the end, remove
the last element, get element i,
etc. More methods exist! Look at
them!

HashSet

14

HashSet s= new HashSet();

HashSet@y2

Hashset

Object

Fields that!
contain a setof objects!
{o0, o1, …, osize()-1}

HashSet() add(Object)!
contains(Object) size()!
remove(Object) !
…

s HashSet@y2
HashSet

An object of class HashSet
contains a growable/
shrinkable set of elements (of
class Object). You can get the
size of the set, add an object
to the set, remove an object,
etc. More methods exist!
Look at them!

Don’t ask what “hash” means.
Just know that a Hash Set
object maintains a set

Iterating over a HashSet or ArrayList

15

HashSet s= new HashSet();!

… code to store values in the set …!

for (Object e : s) {!
 System.out.println(c);!
}

HashSet@y2

HashSet

Object

Fields that!
contain a setof objects!
{o0, o1, …, osize()-1}

HashSet() add(Object)!
contains(Object) size()!
remove(Object) !
…

s HashSet@y2
HashSet

A loop whose body is executed
once with e being each element
of the set. Don’t know order in
which set elements processed

Use same sort of loop to process
elements of an ArrayList in the
order in which they are in the
ArrayList . Format of ArrayList object

16
ArrayList

AbstractList

AbstractCollection

Object

List
Collection

Iterable
List

Collection
IterableCollection

Iterable

Iterable
Not

discussed
today

Interface Collection: abstract methods for
dealing with a group of objects (e.g. sets, lists)

Abstract class AbstractCollection: overrides some
abstract methods with real methods to make it
easier to fully implement Collection

ArrayList
implements
3 other
interfaces,
not shown

Hierarchy of ArrayList object
17

ArrayList

AbstractList

AbstractCollection

Object

List

Collection

Iterable

Iterable
Not

discussed
today

Interface List: abstract methods for dealing with a list
of objects (o0, …, on-1). Examples: ArrayList,
LinkedList
Abstract class AbstractList: overrides some abstract
methods with real methods to make it easier to
fully implement List

Homework:
Look at API
specifications
and build
diagram giving
format of
HashSet

Generics and Java’s Collection Classes

18

ge·ner·ic adjective \jə̇ˈnerik, -rēk\!
relating or applied to or descriptive of all members of a genus,
species, class, or group: common to or characteristic of a whole
group or class: typifying or subsuming: not specific or individual.!

From Wikipedia: generic programming: a style of computer
programming in which algorithms are written in terms of to-be-
specified-later types that are then instantiated when needed for
specific types provided as parameters.

In Java: Without generics, every ArrayList 
object contains a list of elements of class Object. Clumsy!

With generics, we can have an ArrayList of Strings, an ArrayList
of Integers, an ArrayList of Genes. Simplifies programming,
guards against some errors

Read carefully!

Generics: say we want an ArrayList of only one class

19

API specs: ArrayList declared like this:!

public class ArrayList <E> extends AbstractList<E>  
 implements List<E> … { … }

Means:!
Can create ArrayList specialized to certain class of objects:

vs.add(3);!
vi.add(“abc”);!
These are illegal

int n= vs.get(0).size();

vs.get(0) has type String!
No need to cast

ArrayList <String> vs= new ArrayList <String>(); //only Strings!
ArrayList <Integer> vi= new ArrayList <Integer>(); //only Integers

ArrayList to maintain list of Strings is cumbersome

20

ArrayList v= new ArrayList ();!

… Store a bunch of Strings in v …!

// Get element 0, store its size in n
ArrayList @x1

ArrayList

Object

Fields that!
contain a list of objects!
(o0, o1, …, osize()-1)
ArrayList() add(Object)!
get(int) size()!
remove() set(int, Object)!
…v ArrayList@x1 ArrayList

—Only Strings, nothing else

String ob= ((String) v.get(0)).length();!
int n= ob.size();

All elements of v are of type Object.!
So, to get the size of element 0, you!
first have to cast it to String.

Make mistake, put an Integer in v?!
May not catch error for some time.

Generics allow us to say we want ArrayList of Strings only

21

API specs: ArrayList declared like this:!

public class ArrayList<E> extends AbstractList<E>  
 implements List<E> … { … }

Full understanding of generics is not given in this recitation.!
E.g. We do not show you how to write a generic class.!
!
Important point: When you want to use a class that is defined
like ArrayList above, you can write!
 ArrayList<C> v= new ArrayList<C>(…);!
to have v contain an ArrayList object whose elements HAVE to
be of class C, and when retrieving an element from v, its class is
C.

