
11/25/14

1

Lecture 25 – CS2110 – Fall 2014

RACE CONDITIONS AND
SYNCHRONIZATION

Race Conditions

¨  A “race condition” arises if two or more threads
access the same variables or objects concurrently
and at least one does updates

¨  Example: Suppose t1 and t2 simulatenously execute
the statement x = x + 1; for some static global x.
¤  Internally, this involves loading x, adding 1, storing x
¤  If t1 and t2 do this concurrently, we execute the

statement twice, but x may only be incremented once
¤  t1 and t2 “race” to do the update

2

Race Conditions

¨  LOAD X

¨  ADD 1

¨  STORE X

¨  ...
¨  LOAD X
¨  ADD 1
¨  STORE X

Thread t1 Thread t2

3

¨  Suppose X is initially 5

¨  ... after finishing, X=6! We “lost” an update

Working Example: “SummationJob”
4

public class SummationJob implements Runnable {!
 !
 public static int X = 0;!
 public static int NDONE = 0;!
 public static final int NTHREADS = 2;!
 !
 /** Increments X 1000 times. */!
 public void run() {!
 for(int k=0; k<1000; k++) {!
 X = X + 1; // (WARNING: MAIN RACE CONDITION)!
 }!
 NDONE += 1; // (WARNING: ANOTHER RACE CONDITION)!
 }!
 !
 /** Launches NTHREADS SummationJob objects that try to increment X to NTHREADS*1000 */!
 public static void main(String[] args) {!
 try {!
 Thread[] threads = new Thread[NTHREADS];!
 for(int k=0; k<NTHREADS; k++) !
 threads[k] = new Thread(new SummationJob());!
 !
 for(int k=0; k<NTHREADS; k++) !
 threads[k].start();!
 !
 while(NDONE < NTHREADS) Thread.sleep(100);!
 !
 System.out.println("X="+X);!
 !
 }catch(Exception e) {!
 e.printStackTrace();!
 System.out.println("OOPS"+e);!
 }!
 }!
}!

Race Conditions

¨  Race conditions are bad news
¤ Sometimes you can make code behave correctly

despite race conditions, but more often they cause bugs

¤ And they can cause many kinds of bugs, not just the
example we see here!

¤ A common cause for “blue screens”, null pointer
exceptions, damaged data structures

5

Example – A Lucky Scenario
6

private Stack<String> stack = new Stack<String>();

public void doSomething() {
 if (stack.isEmpty()) return;
 String s = stack.pop();
 //do something with s...
}

Suppose threads A and B want to call doSomething(),
and there is one element on the stack

1. thread A tests stack.isEmpty() false
2. thread A pops ⇒ stack is now empty
3. thread B tests stack.isEmpty() ⇒ true
4. thread B just returns – nothing to do

11/25/14

2

Example – An Unlucky Scenario
7

private Stack<String> stack = new Stack<String>();

public void doSomething() {
 if (stack.isEmpty()) return;
 String s = stack.pop();
 //do something with s...
}

Suppose threads A and B want to call doSomething(),
and there is one element on the stack

1. thread A tests stack.isEmpty() ⇒ false
2. thread B tests stack.isEmpty() ⇒ false
3. thread A pops ⇒ stack is now empty
4. thread B pops ⇒ Exception!

Synchronization

¨  Java has one “primary” tool for preventing these
problems, and you must use it by carefully and
explicitly – it isn’t automatic.
¤ Called a “synchronization barrier”
¤ We think of it as a kind of lock

n Even if several threads try to acquire the lock at once, only
one can succeed at a time, while others wait

n When it releases the lock, the next thread can acquire it
n You can’t predict the order in which contending threads will

get the lock but it should be “fair” if priorities are the same

8

Solution – with synchronization
9

private Stack<String> stack = new Stack<String>();

public void doSomething() {
 synchronized (stack) {
 if (stack.isEmpty()) return;
 String s = stack.pop();
 }
 //do something with s...
}

• Put critical operations in a synchronized block
• The stack object acts as a lock
• Only one thread can own the lock at a time

 synchronized block

Solution – Locking
10

public void doSomething() {
 synchronized (this) {
 ...
 }
}

public synchronized void doSomething() {
 ...
}

• You can lock on any object, including this

is equivalent to

How locking works

¨  Only one thread can “hold” a lock at a time
¤  If several request the same lock, Java somehow decides

which will get it

¨  The lock is released when the thread leaves the
synchronization block
¤  synchronized(someObject) { protected code }
¤ The protected code has a mutual exclusion guarantee:

At most one thread can be in it

¨  When released, some other thread can acquire the
lock

11

Locks are associated with objects

¨  Every Object has its own built-in lock
¤ Just the same, some applications prefer to create

special classes of objects to use just for locking
¤ This is a stylistic decision and you should agree on it

with your teammates or learn the company policy if you
work at a company

¨  Code is “thread safe” if it can handle multiple
threads using it… otherwise it is “unsafe”

12

11/25/14

3

Working Example: “SummationJob”
13

public class SummationJob implements Runnable {!
 !
 public static int X = 0;!
 public static int NDONE = 0;!
 public static final int NTHREADS = 2;!
 !
 /** Increments X 1000 times. */!
 public void run() {!
 for(int k=0; k<1000; k++) {!
 X = X + 1; // (WARNING: MAIN RACE CONDITION)!
 }!
 NDONE += 1; // (WARNING: ANOTHER RACE CONDITION)!
 }!
 !
 /** Launches NTHREADS SummationJob objects that try to increment X to NTHREADS*1000 */!
 public static void main(String[] args) {!
 try {!
 Thread[] threads = new Thread[NTHREADS];!
 for(int k=0; k<NTHREADS; k++) !
 threads[k] = new Thread(new SummationJob());!
 !
 for(int k=0; k<NTHREADS; k++) !
 threads[k].start();!
 !
 while(NDONE < NTHREADS) Thread.sleep(100);!
 !
 System.out.println("X="+X);!
 !
 }catch(Exception e) {!
 e.printStackTrace();!
 System.out.println("OOPS"+e);!
 }!
 }!
}!

How can we use locks to
update results?
(keeping silly +1 computation).

Synchronization+priorities

¨  Combining mundane features can get you in trouble
¨  Java has priorities... and synchronization

¤ But they don’t “mix” nicely
¤ High-priority runs before low priority
¤  ... The lower priority thread “starves”

¨  Even worse...
¤ With many threads, you could have a second high

priority thread stuck waiting on that starving low
priority thread! Now both are starving...

14

Fancier forms of locking

¨  Java developers have created various
synchronization ADTs
¤ Semaphores: a kind of synchronized counter
¤ Event-driven synchronization

¨  The Windows and Linux and Apple O/S all have
kernel locking features, like file locking

¨  But for Java, synchronized is the core mechanism

15

Finer grained synchronization

¨  Java allows you to do fancier synchronization
¤ But can only be used inside a synchronization block
¤ Special primitives called wait/notify

n  In java.lang.Object

16

17

java.lang.Object
wait/notify

18

boolean isRunning = true;

public synchronized void run() {
 while (true) {
 while (isRunning) {
 //do one step of simulation
 }
 try {
 wait();
 } catch (InterruptedException ie) {}
 isRunning = true;
 }
}

public void stopAnimation() {
 animator.isRunning = false;
}

public void restartAnimation() {
 synchronized(animator) {
 animator.notify();
 }
}

relinquishes lock on animator –
awaits notification

notifies processes waiting
for animator lock

Suppose we put this inside an object called animator:

must be synchronized!

11/25/14

4

Deadlock

¨  The downside of locking – deadlock

¨  A deadlock occurs when two or more competing
threads are waiting for one-another... forever

¨  Example:
¤ Thread t1 calls synchronized b inside synchronized a
¤ But thread t2 calls synchronized a inside synchronized b
¤  t1 waits for t2... and t2 waits for t1...

19

Visualizing deadlock
20

Process
A

Process
B X Y

A has a lock on X
wants a lock on Y

B has a lock on Y
wants a lock on X

Deadlocks always involve cycles

¨  They can include 2 or more threads or processes in
a waiting cycle

¨  Other properties:
¤ The locks need to be mutually exclusive (no sharing of

the objects being locked)
¤ The application won’t give up and go away (no timer

associated with the lock request)
¤ There are no mechanisms for one thread to take locked

resources away from another
thread – no “preemption”

21

“... drop that mouse or
you’ll be down to 8 lives”

Dealing with deadlocks

¨  We recommend designing code to either
¤ Acquire a lock, use it, then promptly release it, or
¤  ... acquire locks in some “fixed” order

¨  Example, suppose that we have objects a, b, c, ...
¨  Now suppose that threads sometimes lock sets of

objects but always do so in alphabetical order
¤ Can a lock-wait cycle arise?
¤  ... without cycles, no deadlocks can occur!

22

Higher level abstractions

¨  Locking is a very low-level way to deal with
synchronization
¤ Very nuts-and-bolts

¨  So many programmers work with higher level
concepts. Sort of like ADTs for synchronization
¤ We’ll just look at one example today
¤ There are many others; take CS4410 “Operating

Systems” to learn more

23

A producer/consumer example

¨  Thread A produces loaves of bread and puts them
on a shelf with capacity K
¤ For example, maybe K=10

¨  Thread B consumes the loaves by taking them off
the shelf
¤ Thread A doesn’t want to overload the shelf
¤ Thread B doesn’t wait to leave with empty arms

24

producer shelves consumer

11/25/14

5

Producer/Consumer example
25

class Bakery {
 int nLoaves = 0; // Current number of waiting loaves
 final int K = 10; // Shelf capacity

public synchronized void produce() {
 while(nLoaves == K) this.wait(); // Wait until not full
 ++nLoaves;
 this.notifyall(); // Signal: shelf not empty
}

public synchronized void consume() {
 while(nLoaves == 0) this.wait(); // Wait until not empty
 --nLoaves;
 this.notifyall(); // Signal: shelf not full
}

}

Things to notice

¨  Wait needs to wait on the same object that you
used for synchronizing (in our example, “this”, which
is this instance of the Bakery)

¨  Notify wakes up just one waiting thread, notifyall
wakes all of them up

¨  We used a while loop because we can’t predict
exactly which thread will wake up “next”

26

Bounded Buffer

¨  Here we take our producer/consumer and add a
notion of passing something from the producer to
the consumer
¤ For example, producer generates strings
¤ Consumer takes those and puts them into a file

¨  Question: why would we do this?
¤ Keeps the computer more steadily busy

27

Producer/Consumer example
28

class Bakery {
 int nLoaves = 0; // Current number of waiting loaves
 final int K = 10; // Shelf capacity

public synchronized void produce() {
 while(nLoaves == K) this.wait(); // Wait until not full
 ++nLoaves;
 this.notifyall(); // Signal: shelf not empty
}

public synchronized void consume() {
 while(nLoaves == 0) this.wait(); // Wait until not empty
 --nLoaves;
 this.notifyall(); // Signal: shelf not full
}

}

Bounded Buffer example
29

class BoundedBuffer<T> {
 int putPtr = 0, getPtr = 0; // Next slot to use
 int available = 0; // Items currently available
 final int K = 10; // buffer capacity
 T[] buffer = new T[K];

public synchronized void produce(T item) {
 while(available == K) this.wait(); // Wait until not full
 buffer[putPtr++ % K] = item;
 ++available;
 this.notifyall(); // Signal: not empty
}

public synchronized T consume() {
 while(available == 0) this.wait(); // Wait until not empty
 --available;
 T item = buffer[getPtr++ % K];
 this.notifyall(); // Signal: not full
 return item;
}

}

In an ideal world…

¨  Bounded buffer allows producer and consumer to
both run concurrently, with neither blocking
¤ This happens if they run at the same average rate
¤ … and if the buffer is big enough to mask any brief

rate surges by either of the two

¨  But if one does get ahead of the other, it waits
¤ This avoids the risk of producing so many items that we

run out of computer memory for them. Or of
accidentally trying to consume a non-existent item.

30

11/25/14

6

Trickier example

¨  Suppose we want to use locking in a BST
¤ Goal: allow multiple threads to search the tree
¤ But don’t want an insertion to cause a search thread to

throw an exception

31

Code we’re given is thread unsafe
32

class BST {
 Object name; // Name of this node
 Object value; // Value of associated with that name
 BST left, right; // Children of this node

 // Constructor
 public void BST(Object who, Object what) { name = who; value = what; }

// Returns value if found, else null
public Object get(Object goal) {
 if(name.equals(goal)) return value;
 if(name.compareTo(goal) < 0) return left==null? null: left.get(goal);
 return right==null? null: right.get(goal);
}

// Updates value if name is already in the tree, else adds new BST node
public void put(Object goal, object value) {
 if(name.equals(goal)) { this.value = value; return; }
 if(name.compareTo(goal) < 0) {
 if(left == null) { left = new BST(goal, value); return; }
 left.put(goal, value);
 } else {
 if(right == null) { right = new BST(goal, value); return; }
 right.put(goal, value);
 }
}

}

Attempt #1

¨  Just make both put and get synchronized:
¤ public synchronized Object get(…) { … }
¤ public synchronized void put(…) { … }

¨  Let’s have a look….

33

Safe version: Attempt #1
34

class BST {
 Object name; // Name of this node
 Object value; // Value of associated with that name
 BST left, right; // Children of this node

 // Constructor
 public void BST(Object who, Object what) { name = who; value = what; }

// Returns value if found, else null
public synchronized Object get(Object goal) {
 if(name.equals(goal)) return value;
 if(name.compareTo(goal) < 0) return left==null? null: left.get(goal);
 return right==null? null: right.get(goal);
}

// Updates value if name is already in the tree, else adds new BST node
public synchronized void put(Object goal, Object value) {
 if(name.equals(goal)) { this.value = value; return; }
 if(name.compareTo(goal) < 0) {
 if(left == null) { left = new BST(goal, value); return; }
 left.put(goal, value);
 } else {
 if(right == null) { right = new BST(goal, value); return; }
 right.put(goal, value);
 }
}

}

Attempt #1

¨  Just make both put and get synchronized:
¤ public synchronized Object get(…) { … }
¤ public synchronized void put(…) { … }

¨  This works but it kills ALL concurrency
¤ Only one thread can look at the tree at a time
¤ Even if all the threads were doing “get”!

35

Visualizing attempt #1
36

Cathy
cd4

Freddy
netid: ff1

Martin
mg8

Andy
am7

Zelda
za7

Darleen
dd9

Ernie
gb0

put(Ernie, eb0)
get(Martin)… must wait!

get(Martin)… resumes

11/25/14

7

Attempt #2: Improving “get”

¨  put uses synchronized in method declaration
¤ So it locks every node it visits

¨  get tries to be fancy:

¨  Actually this is identical to attempt 1!
¤  public synchronized Object get(Object goal)

¤ Looks different but does exactly the same thing
¨  Still locks during recursive tree traversal

37

// Returns value if found, else null
public Object get(Object goal) {
 synchronized(this) {
 if(name.equals(goal)) return value;
 if(name.compareTo(goal) < 0) return left==null? null: left.get(goal);
 return right==null? null: right.get(goal);
 }
}

Attempt #3: An improved “get”

¨  Locks node when accessing fields, but not during subsequent traversal

38

// Returns value if found, else null
public Object get(Object goal) {
 BST checkLeft = null, checkRight = null;
 synchronized(this) {
 if(name.equals(goal)) return value;
 if(name.compareTo(goal) < 0) {
 if (left==null) return null; else checkLeft = left;
 } else {
 if(right==null) return null; else checkRight = right;
 }
 }
 if (checkLeft != null) return checkleft.get(goal);
 if (checkRight != null) return checkright.get(goal);

 /* Never executed but keeps Java happy */
 return null;
}

relinquishes lock on this – next
lines are “unprotected”

More tricky things to know about

¨  With thread priorities Java can be very annoying
¤ ALWAYS runs higher priority threads before lower

priority threads if scheduler must pick
¤ The lower priority ones might never run at all

¨  Consequence: risk of a “priority inversion”
¤ High-priority thread t1 is waiting for a lock, t2 has it
¤ Thread t2 is runnable, but never gets scheduled

because t3 is higher priority and “busy”

39

Teaser: Threads super important for GPUs
40

http://www.extremetech.com/gaming/148674-nvidias-gtx-titan-brings-supercomputing-performance-to-consumers

NVIDIA GTX Titan

Summary
41

¤ Use of multiple processes and multiple threads within each
process can exploit concurrency
n  Which may be real (multicore) or “virtual” (an illusion)

¤  But when using threads, beware!
n  A “race condition” can arise if two threads try and share data
n  Must lock (synchronize) any shared memory to avoid non-determinism

and race conditions
n  Yet synchronization also creates risk of deadlocks
n  Even with proper locking concurrent programs can have other

problems such as “livelock”
¤ Nice tutorial at

n  http://docs.oracle.com/javase/tutorial/essential/concurrency/index.html

¤  Serious treatment of concurrency is a complex topic (covered in
more detail in cs3410 “systems” and cs4410 “OS”)

