RACE CONDITIONS AND
SYNCHRONIZATION

Lecture 25 — CS2110 — Fall 2014

Race Conditions
[
o Suppose X is initially 5

Thread t1

o LOAD X O ..

1 LOAD X
1 ADD 1 1 ADD 1

o STORE X
o STORE X

0 ... after finishing, X=6! We “lost” an update

Race Conditions
=

11 Race conditions are bad news

1 Sometimes you can make code behave correctly
despite race conditions, but more often they cause bugs

1 And they can cause many kinds of bugs, not just the
example we see here!

1 A common cause for “blue screens”, null pointer
exceptions, damaged data structures

11/25/14

Race Conditions

o A “race condition” arises if two or more threads
access the same variables or objects concurrently
and at least one does updates

o Example: Suppose t1 and t2 simulatenously execute
the statement x = x + 1; for some static global x.

o Internally, this involves loading x, adding 1, storing x

o If t1 and t2 do this concurrently, we execute the
statement twice, but x may only be incremented once
o111 and 12 “race” to do the update

Working Example: “SummationJob”

public class SummationJob implements Runnable {

public static int x -0
public static int NDONE = 0;
public static final int NTHREADS = 2

/2% Increments X 1000 times. +/
public void run() {
For(int k=0; k<1000; k++) {
X =X+ 1; // (VARNING: MATN RACE CONDITION)

)
NDONE += 1; // (WARNING: ANOTHER RACE CONDITION)
3

ement X to NTHREADS*1000 +/

Job objects that try to i
wgs) (

ey (
Thread() threads = new Thread[NTHREADS);
For(int ke0; KeNTHREADS; k++)
threads(k] = new Thread(new Summationdob());
For(int k=0; K<NTHREADS; k++)
threads(k].start();
While(NDONE < NTHREADS) Thread.sleep(100);

System.out.println("x="+x);

Jeateh(Bxception) (
e.printstackrrace();
System.out.println("00Ps"+e) ;

Example — A Lucky Scenario

private Stack<String> stack = new Stack<String>();

public void doSomething() {
if (stack.isEmpty()) return;
String s = stack.pop();
//do something with s...

}

Suppose threads A and B want to call doSomething (),
and there is one element on the stack

1. thread A tests stack.isEmpty () false
2. thread A pops = stack is now empty

3. thread B tests stack.isEmpty () = true
4. thread B just returns — nothing to do

Example — An Unlucky Scenario

private Stack<String> stack = new Stack<String>();

public void doSomething() {
if (stack.isEmpty()) return;
String s = stack.pop();
//do something with s...

}

Suppose threads A and B want to call doSomething (),
and there is one element on the stack

1. thread A tests stack.isEmpty () = false
2. thread B tests stack.isEmpty () = false
3. thread A pops = stack is now empty

4. thread B pops = Exception!

11/25/14

Synchronization

0 Java has one “primary” tool for preventing these
problems, and you must use it by carefully and
explicitly — it isn’ t automatic.

Called a “synchronization barrier”
We think of it as a kind of lock

u Even if several threads try to acquire the lock at once, only
one can succeed at a time, while others wait

® When it releases the lock, the next thread can acquire it

 You can’ t predict the order in which contending threads will
get the lock but it should be “fair” if priorities are the same

Solution — with synchronization

private Stack<String> stack = new Stack<String>();

public void doSomething() {
Eynchronized (stack) {
if (stack.isEmpty()) return;
String s = stack.pop() ;

//do something with s...

synchronized bl@

}

* Put critical operations in a synchronized block
* The stack object acts as a lock
« Only one thread can own the lock at a time

Solution — Locking

*You can lock on any object, including this

public synchronized void doSomething() {

}

is equivalent to

public void doSomething() {
synchronized (this) {

}

}

N
How locking works)

o Only one thread can “hold” a lock at a time
If several request the same lock, Java somehow decides
which will get it
0 The lock is released when the thread leaves the
synchronization block
synchronized(someObiject) { protected code }
The protected code has a mutual exclusion guarantee:
At most one thread can be in it
0 When released, some other thread can acquire the
lock

Locks are associated with objects

01 Every Obiject has its own built-in lock
Just the same, some applications prefer to create
special classes of objects to use just for locking
This is a stylistic decision and you should agree on it
with your teammates or learn the company policy if you
work at a company

0 Code is “thread safe” if it can handle multiple

threads using it... otherwise it is “unsafe”

Working Example: “SummationJob”

public class summationJob implements Runnable {

public static int x -0
public static
public static final int NTHREADS = 2;

How can we use locks to
update results?

/4% Increments X 1000 times. +/
public void run() {
for(int x=0; k<1000; k++) {
X = X+ 1; // (WARNING: MAIN RACE CONDITION)

)
NDONE += 1; // (WARNING: ANOTHER RACE CONDITION)
3

/+* Launches NTHREADS Sunmationob objects that try to increment X to NTHREADS*1000 */
public static void main(string[] args) (

Thread() threads = new Thread[NTHREADS)
fOr(int k=0; K<NTHREADS; k++)
threads(k] = new Thread(new SummationJob());

for(int k=0; KeNTHREADS; k++)
threads(k].stazt();

while(NDONE < NTHREADS) Thread.sleep(100);
System.out.println("X="+1);
Jeaten (Exception) (

e.printstackrrace();
System.out.printin(00PS" e);

11/25/14

(keeping silly +1 computation).

Synchronization+priorities

11 Combining mundane features can get you in trouble
o Java has priorities... and synchronization
But they don’ t “mix” nicely
High-priority runs before low priority

... The lower priority thread “starves”

o Even worse...

With many threads, you could have a second high
priority thread stuck waiting on that starving low
priority thread! Now both are starving...

Fancier forms of locking

o Java developers have created various
synchronization ADTs

Semaphores: a kind of synchronized counter

Event-driven synchronization

o1 The Windows and Linux and Apple O/S all have
kernel locking features, like file locking

o But for Java, synchronized is the core mechanism

Finer grained synchronization

o Java allows you to do fancier synchronization

But can only be used inside a synchronization block

Special primitives called wait/notify
® In java.lang.Object

Constructor Summary

java.lang.Object

Constructor and Description

abject()
Method Summary
Modifier and Type Method and Description
void notify()
Wakes up & singl tresd that is wting on this objects monior.
void sotiei1()
Wakes upa threads that re waiting o this abjects monior
void wast()
aoti£y.() method or the not£5AL1 () method for this
object

void

void

wait(long timeout)
Causes
object,or a specified amount of me has elapsed.

) method of the not£yA11() method for this

wait(long timeout, int nanos)

B0ty () method or th
time has elapsed.

1() method for this
object,or some

wait /notify

Suppose we put this inside an object called animator:

boolean isRunning = true;

public synchronized void run() {
while (true) {
while (isRunning) {

must be synchronized!

//do one step of simulation

} relinquishes lock on animator —
ey L awaits notification
wait();

} catch (InterruptedException ie) {}
ECTITTee S (g public void stopAnimation() {
b animator.isRunning = false;

}

public void restartAnimation() {
synchronized (animator) {
animator.notify() ;

notifies processes waiting
for animator lock

11/25/14

Deadlock

o The downside of locking — deadlock

0 A deadlock occurs when two or more competing
threads are waiting for one-another... forever

0 Example:
Thread t1 calls synchronized b inside synchronized a
But thread t2 calls synchronized a inside synchronized b

t1 waits for 12... and 12 waits for t1...

Visualizing deadlock

A has a lock on X
wants a %\
Process, Process
A B

wmck onY

wants a lock on X

Deadlocks always involve cycles

0 They can include 2 or more threads or processes in
a waiting cycle

0 Other properties:
The locks need to be mutually exclusive (no sharing of
the objects being locked)
The application won’t give up and go away (no timer
associated with the lock request)
There are no mechanisms for one thread to take locked
resources away from another

|
“ A
thread — no “preemption | 2 J
“.. drop that mouse or -

you'll be down to 8 lives”

Dealing with deadlocks

o We recommend designing code to either
Acquire a lock, use it, then promptly release it, or

... acquire locks in some “fixed” order

0 Example, suppose that we have objects g, b, c, ...
o1 Now suppose that threads sometimes lock sets of
objects but always do so in alphabetical order

Can a lock-wait cycle arise?

... without cycles, no deadlocks can occur!

Higher level abstractions

0 Locking is a very low-level way to deal with
synchronization

Very nuts-and-bolts

o So many programmers work with higher level
concepts. Sort of like ADTs for synchronization
We'll just look at one example today

There are many others; take CS4410 “Operating
Systems” to learn more

A producer/consumer example

0 Thread A produces loaves of bread and puts them
on a shelf with capacity K
For example, maybe K=10
o Thread B consumes the loaves by taking them off
the shelf
Thread A doesn’t want to overload the shelf

Thread B doesn’t wait to leave with empty arms

1

shelves consumer

producer

11/25/14

Producer/Consumer example

class Bakery {
int nLoaves = 0; // Current number of waiting loaves
final int K = 10; // Shelf capacity

public synchronized void produce() {

while (nLoaves == K) this.wait(); // Wait until not full
++nLoaves;
this.notifyall(); // Signal: shelf not empty
}
public sy ized void O {
while (nLoaves == 0) this.wait(); // Wait until not empty
--nLoaves;
this.notifyall() ; // Signal: shelf not full

Things to notice

Wait needs to wait on the same object that you
used for synchronizing (in our example, “this”, which
is this instance of the Bakery)

Notify wakes up just one waiting thread, notifyall
wakes all of them up

We used a while loop because we can't predict
exactly which thread will wake up “next”

Bounded Buffer

Here we take our producer/consumer and add a
notion of passing something from the producer to
the consumer

For example, producer generates strings

Consumer takes those and puts them into a file

Question: why would we do this2

Keeps the computer more steadily busy

Producer/Consumer example

class Bakery {
int nLoaves
final int K

=0; // Current number of waiting loaves
= 10; // Shelf capacity
public synchronized void produce() {
while (nLoaves == K) this.wait(); // Wait until not full
++nLoaves;
this.notifyall(); // Signal: shelf not empty
}

public synchronized void consume() {

while (nLoaves == 0) this.wait(); // Wait until not empty
--nLoaves;
this.notifyall(); // Signal: shelf not full

Bounded Buffer example

class BoundedBuffer<T> {
int putPtr = 0, getPtr = 0; // Next slot to use
int available = 0; // Items currently available
final int K = 10; // buffer capacity
T[] buffer = new T[K];

public synchronized void produce (T item) {
while (available == K) this.wait(); // Wait until not full
buffer[putPtr++ % K] = item;
++available;
this.notifyall(); // Signal: not empty

}

public synchronized T consume() {
while (available == 0) this.wait(); // Wait until not empty
--available;
T item = buffer[getPtr++ % KI;
this.notifyall(); // Signal: not full
return item;

In an ideal world...

Bounded buffer allows producer and consumer to
both run concurrently, with neither blocking
This happens if they run at the same average rate

... and if the buffer is big enough to mask any brief
rate surges by either of the two

But if one does get ahead of the other, it waits
This avoids the risk of producing so many items that we
run out of computer memory for them. Or of
accidentally trying to consume a non-existent item.

Trickier example

0 Suppose we want to use locking in a BST
Goal: allow multiple threads to search the tree

But don’t want an insertion to cause a search thread to
throw an exception

11/25/14

Code we're given is thread unsafe

class BST {
Object name; // Name of this node
Object value; // Value of associated with that name
BST left, right; // Children of this node

// Constructor

public void BST(Object who, Object what) { name = who; value = what; }

// Returns value if found, else null

public Object get(Object goal) {
if (name.equals(goal)) return value;
if (name.compareTo(goal) < 0) return left==null? null: left.get(goal);
return right==null? null: right.get(goal);

}

// Updates value if name is already in the tree, else adds new BST node
public void put(Object goal, object value) {
if (name.equals(goal)) { this.value = value; return; }
if (name.compareTo (goal) < 0) {
if (left == null) { left = new BST(goal, value); return; }
left.put(goal, value);
} else {
if (right == null) { right = new BST(goal, value); return; }
right.put(goal, value);

Attempt #1

0 Just make both put and get synchronized:
public synchronized Object get(...) { ... }
public synchronized void put(...) { ... }

01 Let’s have a look....

Safe version: Attempt #1

class BST {
Object name; // Name of this node
Object value; // Value of associated with that name
BST left, right; // Children of this node

// Constructor
public void BST(Object who, Object what) { name = who; value = what; }

// Returns value if found, else null

public synchronized Object get(Object goal) {
if (name.equals(goal)) return value;
if (name.compareTo(goal) < 0) return left==null? null: left.get(goal);
return right==null? null: right.get(goal);

}

// Updates value if name is already in the tree, else adds new BST node
public synchronized void put(Object goal, Object value) {

if (name.equals(goal)) { this.value = value; return; }

if (name.compareTo (goal) < 0) {
if (left == null) { left = new BST(goal, value); return; }
left.put(goal, value);

} else {
if (right == null) { right = new BST(goal, value); return; }

right.put(goal, value);

Attempt #1

o Just make both put and get synchronized:
public synchronized Object get(...) { ... }
public synchronized void put(...) { ... }

0 This works but it kills ALL concurrency
Only one thread can look at the tree at a time

Even if all the threads were doing “get”!

Visualizing attempt #1

get(Martin)... resumes

put(Ernie, eb0) Freddy

netid: ff1

AR
Cathy Martin
cd4 mg8
Andy Darleen Zelda
am7 dd9 za7

Ernie

gb0

get(Martin)... must wait!

Attempt #2: Improving “get”

0 put uses synchronized in method declaration
So it locks every node it visits
o get tries to be fancy:

11/25/14

// Returns value if found, else null
public Object get(Object goal) {
synchronized (this) {
if (name.equals(goal)) return value;
if (name.compareTo(goal) < 0) return left==null? null: left.get(goal);
return right==null? null: right.get(goal);
}
}

0 Actually this is identical to attempt 1!
public synchronized Object get(Object goal)

Looks different but does exactly the same thing

0 Still locks during recursive tree traversal

Attempt #3: An improved “get”

// Returns value if found, else null
public Object get(Object goal) {
BST checkLeft = null, checkRight = null;
synchronized (this) {
if (name.equals(goal)) return value;
if (name.compareTo (goal) < 0) {
if (left==null) return null; else checkLeft = left;
} else {

if(x relinquishes lock on this — next ght ;
) b lines are “unprotected”

if (checkLeft ull) return checkleft.get(goal);
if (checkRight != null) return checkright.get(goal);

/* Never executed but keeps Java happy */
return null;

}

o Locks node when accessing fields, but not during subsequent traversal

More ftricky things to know about

o With thread priorities Java can be very annoying
ALWAYS runs higher priority threads before lower
priority threads if scheduler must pick

The lower priority ones might never run at all

o Consequence: risk of a “priority inversion”
High-priority thread t1 is waiting for a lock, 12 has it

Thread t2 is runnable, but never gets scheduled
because 13 is higher priority and “busy”

http: ing/148674-nvidias-gtx-titan-br .

Summary

Use of multiple processes and multiple threads within each
process can exploit concurrency

Which may be real (multicore) or “virtual” (an illusion)
But when using threads, beware!
= A “race condition” can arise if two threads try and share data

= Must lock (synchronize) any shared memory to avoid non-determinism
and race conditions

= Yet synchronization also creates risk of deadlocks

= Even with proper locking concurrent programs can have other
problems such as " livelock

Nice tutorial at
= hitp://docs.oracle.com/j Jtutorial/ ial/ y/index.html

Serious treatment of concurrency is a complex topic (covered in
more detail in ¢s3410 “systems” and ¢s4410 “OS”)

