
11/18/14

1

 A6
AND A START ON THREADS
AND CONCURRENCY

Lecture 24 – CS2110 – Fall 2014

Administrative matters

PRELIM 2
¨  Thursday, 5:30pm, Statler Auditorium (even ids)

¨  Thursday, 7:30pm, Statler Auditorium (odd ids)

¨  Those authorized to have more time or a quieter space:
5:00PM onward, Statler 196

¨  Recitation this week: Those in recitation

 2110-208 Tu 1:25PM - 2:15PM in Olin Hall 218.

 Leon is out of town. Please go to room Olin 245

 instead and attend Eric Perdew’s recitation.

2

Concurrency

¨  Modern computers have “multiple cores”
¤  Instead of a single CPU on the chip
¤  4-8 common on laptops
¤ And even with a single core (CPU) your program may have

more than one thing “to do” at a time
¤ Argues for having a way to do many things at once

¨  Finally, we often run many programs all at once

¨  And assignment A6 is filled with such concurrency!

3

What is a Thread?

¨  A separate “execution” that runs within a single program and
can perform a computational task independently and
concurrently with other threads

¨  Many applications do their work in just a single thread: the one
that called main() at startup
¤  But there may still be extra threads...

n Garbage collection runs in a “background” thread
n GUIs have a separate thread that listens for events and

“dispatches” upcalls

¨  Today: learn to create new threads of our own and see
threads in action in assignment A6.

4

What is a Thread?

¨  A thread is a kind of object that “independently computes”
¤ Needs to be created, like any object
¤  Then “started”. This causes some method (like main()) to be

called. It runs side by side with other threads in the same
program, and they see the same global data

¨  The Mac has an app, Activity Monitor, that shows you what
apps are running and how many threads each has. We show
you this on Gries’s laptop. The PC should have a similar app.
Find it and play with it!

¨  On Gries’s computer at the moment, the Mail app 22 threads,
Safari has 13. DropBox has 41. Eclipse has 34.

5

Concurrency

¨  Concurrency refers to a single program in which several
threads are running simultaneously
¤  Special problems arise
¤  They see the same data and hence can interfere with each

other, e.g. one thread modifies a complex structure like a
heap while another is trying to read it

6

11/18/14

2

Class Thread in Java

¨  Threads are instances of class Thread
¤ Can create many, but they consume space & time

¨  The Java Virtual Machine created the Thread that executes
your method main.

¨  Threads have a priority
¤ Higher priority Threads are executed preferentially
¤ A newly created Thread has initial priority equal to the

Thread that created it (but can change)

7

Runnable object, running in a new Thread
8

class PrimeRun
 implements Runnable {
 long a, b;
 PrimeRun(long a, long b) {
 this.a= a; this.b= b;
 }
 public void run() {
 // compute primes
 // in a..b
 ...
 }
}

PrimeRun p=
 new PrimeRun(143, 195);
new Thread(p).start();

PrimeRun@...
toString()
…

Object

run() …
PrimeRun

run() Runnable

Method start() will call
p’s method run() in the
new thread of execution

Runnable object, running in a new Thread
9

class PrimeRun
 implements Runnable {
 long a, b;
 PrimeRun(long a, long b) {
 this.a= a; this.b= b;
 }
 public void run() {
 // compute primes
 // in a..b
 ...
 }
}

PrimeRun p=
 new PrimeRun(143, 195);
p.run();

PrimeRun@...
toString()
…

Object

run() …
PrimeRun

run() Runnable

No new thread. run()
runs in same thread as
its caller

Creating a new Thread (Method 2)
10

class PrimeThread
 extends Thread {
 long a, b;
 PrimeThread(long a, long b) {
 this.a= a; this.b= b;
 }
 public void run() {
 // compute primes
 // a..b
 ...
 }
}

PrimeThread p=
 new PrimeThread(143, 195);
p.start();

run() Runnable

interrupt()
isAlive()
getState() …

PT@...

Object

run() … PT

Thread

toString()
…

Class Thread has
methods to allow more
control over threads

Class Thread has methods for handling threads
11

run() Runnable

interrupt()
isAlive()
getState() …

PT@6667f34e

Object

run() … PT

Thread

toString()
…

You can interrupt a thread,
maintain a group of threads,
set/change its priority,
sleep it for a while,
etc.

Class PT extends Thread, which implements Runnable

Now to Assignment A6B: Shipping Game
12

In a nut shell:
•  Bunch of cities with roads between them (a graph)
•  Parcels sitting at cities, have to be trucked to other

cities
•  Trucks, all at a city called Truck Depot, have to be used

to move each parcel from its start city to its destination
city. Then return Trucks to the Home Depot

•  YOU have to write the program that tells the Trucks
what to do!

•  Efficiency is important! Use shortest paths where
possible.

We DEMO A6B

11/18/14

3

Assignment A6B: Shipping Game
13

Assignment A6 is developed Michael (Shnik) Patashnik
Undergrad TA
A&S, studying Economics and CS

Other CS2110 staff involved: Eric Chahin, Alex Fusco,
Aaron Nelson, Alexandra Anderson.

Which one of you will be the next one to
help us develop our assignments?

Ideas for A6b
14

•  Spend a lot of time thinking about the design, looking
at specs of Truck, Parcel, manager, etc. Look at class
diagram on page 7 of the handout.

•  Given a truck that has to pickup a Parcel, need to find
a quickest/shortest path to where Parcel is. Dfs and
bfs won’t do. Probably need a version of shortest-path
algorithm from a start node to another.

•  Each Truck has a field UserData in which you can
store anything you wish. E.g. a path from current
location to destination of the Parcel it is carrying.

•  Each Parcel also has a UserData field

You class MyManager extends game.Manager
15

We don’t give you
Java source files.
We give you only
the .class files and
good specs of the
classes. Specs are in
Data/doc

We demo looking at
API specs

Your main task
16

public class YourManager extends Manager {

 public @Override void run() {
 Look at map, parcels truck, do preprocessing
 and give Trucks their initial instructions
 }

 public @Override void truckNotification(Truck t,
 Notification message) {
 Called when event happens with Truck t —it
 waited to long and is prodding, it arrived at a city,
 there’s a parcel at the city, etc. This method should
 give the truck directions on how to proceed.
 }

Manager and trucks run in their own thread
17

public class YourManager extends Manager {
 public @Override void run() {… }
 public @Override void
 truckNotification(Truck t, Notification mess) { ... }
}

Your manager Truck 1 Truck 2 …
 thread thread thread

Make sure
shared variables

don’t cause
problems.

E.g. Two Trucks
try to take the
same Parcel

A6 Efficiency
18

You want to get the best score possible! How much you
do, what you do, depends your time constraints, your
abilities, whether your find this assignment fun. Here are
things to consider.

It costs for a Truck to wait
It costs for a Truck to travel
It costs for a Truck to pick up and drop a Parcel
A LOT is gained by dropping a Parcel at its destination
Parcel Payoff is a LOT more if the truck that delivers it
has the same color as the Parcel.

11/18/14

4

Big problem with shared data: a small example

x= x + 1; x= x + 1;

Thread t1 Thread t2

19

Suppose x is initially 5

... after finishing, x = 6! Why?

Sequence:
 t1 evaluates x+1 to get 6
 t2 evaluates x+1 to get 6
 t2 stores its value 6 in x
 t1 stores its value 6 in x

We need ways to prevent
this from happening.

There are several. Here,
we explain only Java’s

synchronization
mechanism

Getting concurrent programs right is much much harder!

The synchronized block
20

Stack<String> s= new Stack<String>();

synchronized(s) {
 This is a synchronized
 block of code
}

A block synchronized on an object prohibits any other
thread from accessing the object while the block is
being executed.

The synchronized block is a primary tool for
eliminating shared data problems. (There are others)

if (…) {
 This is a block of code
}

Solution – with synchronization
21

private Stack<String> s= new Stack<String>();

public void doSomething() {
 String st;
 synchronized (s) {
 if (s.isEmpty()) return;
 st= s.pop();
 }

 code to do something with st
}

• Put critical operations in a synchronized block
• The stack object acts as a lock
• Only one thread can own the lock at a time
• Make synchronized blocks as small as possible

 synchronized block

Solution – Locking
22

public void doSomething(){
 synchronized (this) {
 body
 }
}

You can lock on any object, including this

public synchronized void doSomething(){
 body
}

is equivalent to

Note: the whole body
is synchronized on

this. There’s a
shorthand for this in

Java

Solving the shared x= x+1 problem
23

public class Ctr {
 int x= 0;
 public synchronized void inc {
 x= x + 1;
 }
}

public class T extends Thread {
 Ctr ctr;
 public T(Ctr c) { ctr= c;}
 public void run() {
 … ctr.inc(); …
 }
}

Ctr c= new Ctr();
Thread t1= new T(c);
Thread t2= new T(c);

T1.start();
T2.start();

T1 and T2 share a
counter object. They
can try to increment x
at the same time (by
calling inc), but one
must wait.

Threads and synchronization in A6
24

A lot of synchronization happens behind the scenes in A6:
•  The manager that you write is a Thread.
•  Each Truck is a Thread.

Depending on your implementation, you may or may not
have to use synchronization primitives in your part.
Most of you will not use synchronized blocks at all.

Just be careful and ask yourself whether concurrency can
cause problems. E.g. can two trucks try to pick up the
same Parcel at the same time?

11/18/14

5

Manager and trucks run in their own thread
25

public class YourManager extends Manager {
 public @Override void run() {… }
 public @Override void
 truckNotification(Truck t, Notification mess) { ... }
}

Your manager Truck 1 Truck 2 …
 thread thread thread

Make sure
shared variables

don’t cause
problems.

E.g. Two Trucks
try to take the
same Parcel

Your method run(): Preprocessing
26

for Parcel p do
 Choose a truck t to deliver p.
 Store p in a data structure in t’s user data.
end

How to chose? It’s up to you.
How to store data? It’s up to you.

Your truckNotification(Truck t, Notification mess)
27

// Always start with first if
if preprocessing not done then return;

if there are no Undelivered Parcels
 then Route t home and return;

if t holding a parcel then
 Route t to parcel’s destination,
 drop it off if there
else Find next parcel assigned to t,
 route to that parcel

Remember:
several threads
(Trucks) may be
executing this at
the same time. If
shared data
structures used,
must make sure
concurrency
doesn’t create
problems

Truck t calls this method to say that it has done something
or it is waiting for further instructions.

Synchronized collections
28

Study class Collections and the methods before
working on the assignment:

synchronizedCollection
synchronizedSet
synchronizedSortedSet
synchronizedList
synchronizedMap
synchronizedSortedMap

