A scientist gave a lecture on astronomy. He described how the earth orbits the sun, which, in turn, orbits the center of a vast collection of stars called our galaxy.

Afterward, a lady got up and said, "That's rubbish. The world is really a flat plate supported on the back of a giant turtle."

The scientist gave a superior smile before replying, "What's the turtle standing on?" "Another turtle," was the reply.
"And that turtle?" You're very clever, young man, very clever", said the old lady. "But it's turtles all the way down!"

INDUCTION
Lecture 22
CS2110 - Fall2014

Overview: Reasoning about programs

Our broad problem: code is unlikely to be correct if we don't have good reasons for believing it works
\square We need clear problem statements
\square We need a rigorous way to convince ourselves that what we wrote solves the problem

But reasoning about programs can be hard
\square Especially with recursion, concurrency

- Today: focus on induction and recursion

We won't cover all slides

This 50-minute lecture cannot cover all the material.
But you are responsible for it. Please study it all.

1. Defining functions recursively, iteratively, and in closed form
2. Induction over the integers
3. Proving recursive methods correct using induction
4. Weak versus strong induction

Prelim 2 is coming up: 20 November.
Review handout is on the course website (exam page), along with past prelims and statement about conflicts

Can define a function in various ways: Example

Let $S:$ int \rightarrow int be the function where $S(n)$ is the sum of the integers from 0 to n. For example,

$$
S(0)=0 \quad S(3)=0+1+2+3=6
$$

\square Definition, iterative form: $S(n)=0+1+\ldots+n$
$=\operatorname{sum}_{i=0}^{n} i$
\square Definition, recursive form:

$$
S(0)=0 \quad S(n)=n+S(n-1) \text { for } n>0
$$

\square Definition: closed form (doesn't use recursion or iteration): $S(n)=n(n+1) / 2$

How do we know these three definitions are equivalent?

$$
\begin{aligned}
& \square \text { Definition, iterative form: } \begin{aligned}
S(n) & =0+1+\ldots+n \\
& =\operatorname{sum}_{i=0}^{n} i
\end{aligned} \\
& \square \text { Definition, recursive form: } \\
& \quad S(0)=0 \quad S(n)=n+S(n-1) \text { for } n>0 \\
& \text { Definition: closed form: } \\
& S(n)=n(n+1) / 2 \\
& \text { How can we prove they are equivalent? }
\end{aligned}
$$

(Strong) Induction over integers

To prove that property $\mathrm{P}(\mathrm{n})$ holds for all integers $\mathrm{n} \geq 0$,

1. Base case: Prove that $P(0)$ is true
2. Inductive Case: Assume inductive hypotheses $\mathrm{P}(0), \ldots, \mathrm{P}(\mathrm{k})$ for an arbitrary integer $\mathrm{k}>=0$, prove $\mathrm{P}(\mathrm{k}+1)$
3. Conclusion: $\mathrm{P}(\mathrm{n})$ holds for all integers $\mathrm{n} \geq 0$

Alternative Inductive Case: Assume inductive hypotheses
$P(0), \ldots P(k-1)$ for an arbitrary integer $k>0$, prove $P(k)$

Example proof by mathematical induction

(Strong) Induction over integers

To prove that property $\mathrm{P}(\mathrm{n})$ holds for all integers $\mathrm{n} \geq 0$,

1. Base case: Prove that $P(0)$ is true
2. Inductive Step: Assume inductive hypotheses $\mathrm{P}(0), \ldots \mathrm{P}(\mathrm{k})$ for an arbitrary integer $\mathrm{k}>=0$, prove $\mathrm{P}(\mathrm{k}+1)$.

- Conclusion: $\mathrm{P}(\mathrm{n})$ holds for all integers $\mathrm{n} \geq 0$

Alternative Induction Step: Assume inductive hypotheses $\mathrm{P}(0), \ldots \mathrm{P}(\mathrm{k}-1)$ for an arbitrary integer $\mathrm{k}>0$, prove $\mathrm{P}(\mathrm{k})$

A Note on Base Cases

Sometimes we are interested in showing some proposition is true for integers $\geq b$
\square Intuition: we knock over domino b, and dominoes in front get knocked over; not interested in dominoes 0..b-1

- In general, the base case in induction does not have to be 0
\square If base case is an integer b
\square Induction proves the proposition for $n=b, b+1, b+2, \ldots$
\square Does not say anything about n in 0..b-1

Math induction nonzero base case: stamp problem

Theorem: For $n \geq 8, P(n)$ holds:
$P(n)$: There exist non-negative ints b, c such that $n=3 b+5 c$
using 3ϕ and 5ϕ stamps.
Theorem: For $n \geq 8, P(n)$ holds:
$P(n)$: There exist non-negative ints b, c such that $n=3 b+5 c$

Base case: True for $n=8: 8=3+5$.
Choose b $=1$ and $c=1$.
i.e. one 3ϕ stamp and one 5ϕ stamp

Sum of squares: more complex example

Let SQ : int \rightarrow int be the function that gives the sum of the squares of integers from 0 to n :
\square Definition (recursive):

$$
\begin{aligned}
& S Q(0)=0 \\
& S Q(n)=n^{2}+S Q(n-1) \quad \text { for } n>0
\end{aligned}
$$

\square Definition (iterative form):

$$
S Q(n)=0^{2}+1^{2}+\ldots+n^{2}
$$

\square Equivalent closed-form expression? (neither iterative nor recursive)

Closed-Form Expression for $\mathrm{SQ}(\mathrm{n})$

Sum of integers in $0 . . n$ was $n(n+1) / 2$ which is a quadratic in n, i.e. $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Inspired guess: perhaps sum of squares of integers between 0 through n is a cubic in n

Conjecture: $S Q(n)=a n^{3}+b n^{2}+c n+d$ where a, b, c, d are unknown coefficients

How can we find the four unknowns?
Idea: Use any 4 values of n to generate 4 linear equations, and then solve

One approach

Try a few other values of n to see if they work.

- Try $\mathrm{n}=5: \quad \mathrm{SQ}(\mathrm{n})=0+1+4+9+16+25=55$
\square Closed-form expression: 5•6.11/6=55
\square Works!

Try some more values..

We can never prove validity of the closed-form solution for all values of n this way, since there are an infinite number of values of n

One approach
21.
Try a few other values of n to see if they work. \square Try $n=5: \quad$ SQ(n$)=0+1+4+9+16+25=55$ \square Closed-form expression: $5 \cdot 6 \cdot 11 / 6=55$ \square Works!
Try some more values...
We can never prove validity of the closed-form solution
for all values of n this way, since there are an infinite
number of values of n

Is the formula correct?

This suggests

$$
\begin{aligned}
S Q(n) & =0^{2}+1^{2}+\ldots+n^{2} \\
& =n^{3} / 3+n^{2} / 2+n / 6 \\
& =\left(2 n^{3}+3 n^{2}+n\right) / 6 \\
& =n(n+1)(2 n+1) / 6
\end{aligned}
$$

Question: Is this closed-form solution true for all n ?
\square Remember, we used only $n=0,1,2,3$ to determine these coefficients
\square We do not know that the closed-form expression is correct for other values of n

Are these two functions equal?

SQR (R for recursive)

$$
\begin{aligned}
& \operatorname{SQR}(0)=0 \\
& \operatorname{SQR}(n)=\operatorname{SQR}(n-1)+n^{2}, n>0
\end{aligned}
$$

SQC (C for closed-form)

$$
S Q C(n)=n(n+1)(2 n+1) / 6
$$

Proof (by Induction)	$\begin{aligned} & \operatorname{SQR}(0)=0 \\ & \operatorname{SQR}(n)=\operatorname{SQR}(n-1)+n^{2}, \quad n>0 \end{aligned}$
25	$S Q C(n)=n(n+1)(2 n+1) / 6$
	Here is $\mathrm{P}(\mathrm{n}): \mathrm{SQR}(\mathrm{n})=\mathrm{SQC}(\mathrm{n})$
Base case: $\mathrm{P}(0)$ holds because $\mathrm{SQ}_{\mathrm{R}}(0)=0=\mathrm{SQ}_{\mathrm{C}}(0)$, by definition	
Inductive case: Inductive Hypotheses: $\mathrm{P}(0), \ldots, \mathrm{P}(\mathrm{k}), \mathrm{k} \geq 0$: Using them, prove $\mathrm{P}(\mathrm{k}+1)$	

Theorem. Every integer >1 is divisible by a prime.

Restatement. For all $n>=2, P(n)$ holds:	Inductive case
$\quad P(n): n$ is divisible by a prime.	required not
Proof	$P(k)$ but $P(d)$

Base case: $\mathrm{P}(2): 2$ is a prime, and it divides itself.
Inductive case: Assume $\mathrm{P}(2), \ldots, \mathrm{P}(\mathrm{k})$ and prove $\mathrm{P}(\mathrm{k}+1)$.
Case $1 . \mathrm{k}+1$ is prime, so it is divisible by itself.
Case $2 . \mathrm{k}+1$ is composite -it has a divisor d in 2..k.
$P(d)$ holds, so some prime p divides d.
Since p divides d and d divides $\mathrm{k}+1$, p divides $\mathrm{k}+1$.
So $\mathrm{k}+1$ is divisible by a prime.
$\mathrm{k}+1=\mathrm{d} * \mathrm{c} 1=\mathrm{p} * \mathrm{c} 2 * \mathrm{c} 1$ (for some c 1 and c 2)

Proof of $P(k+1)$

Inductive Hypotheses: $\mathrm{P}(\mathrm{k}), \mathrm{k} \geq 0: \quad \mathrm{SQR}(\mathrm{k})=\mathrm{SQC}(\mathrm{k})$

$$
\operatorname{SQR}(\mathrm{k}+1)
$$

$=\quad<$ def of $\mathrm{SQR}(\mathrm{k}+1)>$
$S Q R(0)=0$
$\operatorname{SQR}(\mathrm{k})+(\mathrm{k}+1)^{2}$
$=\quad<$ Ind Hyp P(k)> $\quad \operatorname{SQC}(n)=n(n+1)(2 n+1) / 6$ $\operatorname{SQC}(\mathrm{k})+(\mathrm{k}+1)^{2}$
$=\quad<\operatorname{def}$ of $\operatorname{SQC}(\mathrm{k})\rangle$ $\mathrm{k}(\mathrm{k}+1)(2 \mathrm{k}+1) / 6+(\mathrm{k}+1)^{2}$
$=$ <algebra ---we leave this to you>
$(\mathrm{k}+1)(\mathrm{k}+2)(2 \mathrm{k}+3) / 6 \quad$ Don't just flounder around.
$=\quad<\operatorname{def}$ of $\operatorname{SQC}(\mathrm{k}+1)>\quad$ Opportunity directed. $\operatorname{SQC}(\mathrm{k}+1) \quad$ Expose induction hypothesis

Strong versus weak induction

In our first proofs, in inductive case, we assumed $P(0), \ldots, P(k)$ but used only $\mathrm{P}(\mathrm{k})$ in the proof. Didn't have to assume $\mathrm{P}(0), \ldots \mathrm{P}(\mathrm{k}-1)$.
That's using weak induction.
In the last proof, in inductive case, we assumed $P(0), \ldots, P(k)$ and actually used $P(d)$, where $d<k$, in the proof.

That's strong induction.
Strong induction and weak induction are equally powerful -one can turn a strong-induction proof into a weak-induction proof with an appropriate change in what $P(n)$ is
Don't be concerned about this difference!

Strong versus weak induction

We want to prove that some property $P(n)$ holds for all n
\square Weak induction

- Base case: Prove $\mathrm{P}(0)$
- Inductive case:

Assume $P(k)$ for arbitrary $k \geq 0$ and prove $P(k+1)$
\square Strong induction

- Base case: Prove P(0)
- Inductive case:

Assume $P(0), \ldots, P(k)$ for arbitrary $k \geq 0$ and prove $P(k+1)$

The two proof techniques are equally powerful.
Somebody proved that.

Complete binary trees (cbtrees)

Theorem:
A depth-d cbtree has 2^{d} leaves and $2^{d+1}-1$ nodes.

Proof by induction on d.
$P(d)$: A depth-d cbtree has 2^{d} leaves and $2^{d+1}-1$ nodes.

Base case: $\mathrm{d}=0$. A cbtree of depth 0 consists of one node. It is a leaf. There are $2^{0}=1$ leaves and $2^{1}-1=1$ nodes.

Proof outline

Consider kitchens of size $2^{n} \times 2^{n}$ for $n=0,1,2, .$.
$\mathrm{P}(\mathrm{n})$: A $2^{\mathrm{n}} \times 2^{\mathrm{n}}$ kitchen with one square covered can be tiled.

- Base case: Show that tiling is possible for 1×1 board
- Induction Hypothesis: for some $\mathrm{k} \geq 0, \mathrm{P}(\mathrm{k})$ holds
- Prove $P(k+1)$ assuming $P(k)$

The 8×8 kitchen is a special case of this argument.
We will have proven the 8×8
special case by solving a more general problem!

Inductive case
$P(k): A 2^{k} \times 2^{k}$ kitchen with one square covered can be tiled. 36

In order to use the inductive hypothesis $\mathrm{P}(\mathrm{k})$, we have to expose kitchens of size $2^{\mathrm{k}} \times 2^{\mathrm{k}}$. How do we draw them?

Recursive case

$P(k): A 2^{k} \times 2^{k}$ kitchen with one square covered can be tiled.

Put in one tile so that each $2^{\mathrm{k}} \times 2^{\mathrm{k}}$ kitchen has one square covered. Now, by $\mathrm{P}(\mathrm{k})$, all four $2^{\mathrm{k}} \times 2^{\mathrm{k}}$ kitchens can be tiles

Tiling example (poor strategy)

Try a different induction strategy
\square Proposition
\square Any $n \times n$ board with one square covered can be tiled
\square Problem

- A 3×3 board with one square covered has 8 remaining squares, but the tiles have 3 squares; tiling is impossible
\square Thus, any attempt to give an inductive proof of this proposition must fail
\square Note that this failed proof does not tell us anything about the 8×8 case

Procedure to tile a kitchen

Theorem. For all $\mathrm{n} \geq 0, \mathrm{P}(\mathrm{n})$ holds:
$\mathrm{P}(\mathrm{n})$: The call tile (n, p) tiles the kitchen given by n and p
Proof by induction on n.
Base case, $\mathrm{n}=0$. It's a 1×1 covered square. No tiles need
to be laid, and the procedure doesn't lay any.
/** Tile a kitchen of size $2^{\mathrm{k}} \times 2^{\mathrm{k}}$.
Precondition: $\mathrm{k}>=0$ and one square is covered */
public static void tile(int k, Positions p) \{
if ($\mathrm{k}==0$) return;
\}
$\mathrm{P}(\mathrm{k})$: The call tile (k, p) tiles the kitchen given by k and p
Inductive case. Assume $\mathrm{P}(\mathrm{k}-1)$ for $\mathrm{k}>0$, Prove $\mathrm{P}(\mathrm{k})$

```
public static void tile(int k, Positions p) {
    if (k== 0) return;
    View the kitchen as 4 kitchens of size 2 }\mp@subsup{2}{}{k-1}\times2\mp@subsup{2}{}{k-1}\mathrm{ ;
    Place one tile so that all 4 kitchens have one tile covered.
    tile(k-1, p for upper left kitchen);
    tile(k-1, p for upper right kitchen);
    tile(k-1, p for lower left kitchen);
    tile(k-1, p for lower right kitchen);
}
There are four recursive calls. Each, by the inductive hypothesis \(\mathrm{P}(\mathrm{k}-1)\), tiles a kitchen ... etc.
```


/** = the number of 'e's in s */
public static int nE (String s) \{
if (s.length $==0$) return 0 ; // base case
// \{s has at least 1 char\}
return $(\mathrm{s}[0]=$ ' e ' ? $1: 0)+\mathrm{nE}(\mathrm{s}[1 .]$.
\}

Theorem. For all $\mathrm{n}, \mathrm{n}>=0, \mathrm{P}(\mathrm{n})$ holds:
$P(n)$: For s a string of length $n, n E(s)=$ number of 'e's in s

Proof by induction on \mathbf{n}

Base case. If $\mathrm{n}=0$, the call nE (s) returns 0 , which is the number of ' e 's in s , the empty string. So $\mathrm{P}(0)$ holds.
$P(k)$: For s a string of length $k, n E(s)=$ number of ' e 's in s

```
/** = the number of 'e's in s */
public static int nE(String s) {
    if (s.length == 0) return 0; // base case
        // {s has at least 1 char}
        return (s[0] == 'e'? 1:0) + nE(s[1..])
}
```

Inductive case: Assume $\mathrm{P}(\mathrm{k}), \mathrm{k} \geq 0$, and prove $\mathrm{P}(\mathrm{k}+1)$.

Suppose s has length $\mathrm{k}+1$. Then $\mathrm{s}[1 .$.$] has length \mathrm{k}$. By the inductive hypothesis $\mathrm{P}(\mathrm{k})$,
$\mathrm{nE}(\mathrm{s}[1 .])=$. number of ' e 's in $\mathrm{s}[1 .].$.
Thus, the statement returns the number of ' e 's in s.

Conclusion
\square Induction is a powerful proof technique
\square Recursion is a powerful programming technique
\squareInduction and recursion are closely related \square We can use induction to prove correctness and complexity results about recursive methods

