
GRAMMARS, PARSING,
TREE TRAVERSALS
Lecture 21
CS2110 – Fall2014

1

Pointers to material
2

¤  Parse trees: text, section 23.36
¤ Definition of Java Language, sometimes useful:

docs.oracle.com/javase/specs/jls/se7/html/index.html
¤ Grammar for most of Java, for those who are curious:

docs.oracle.com/javase/specs/jls/se7/html/jls-18.html
¤  Tree traversals –preorder, inorder, postorder: text, sections

23.13 .. 23.15.

Expression trees
3

Can draw a tree for (2 + 3) * (1 + (5 – 4)

*
+

2 3
+

1 –
4

public abstract class Exp {
 /* return the value of this Exp */
 public abstract int eval();
}

5

Expression trees
4

public class Int extends Exp {
 int v;
 public int eval() {
 return v;
 }
}

public class Add extends Exp {
 Exp left;
 Exp right;
 public int eval() {
 return left.eval() + right.eval();
 }
}

public abstract class Exp {
 /* return the value of this Exp */
 public abstract int eval();
}

tree for (2 + 3) * (1 + – 4) 5

*
+

2 3
+

1 –
4

Preorder traversal:
1. Visit the root
2. Visit left subtree, in preorder
3. Visit right subtree, in preorder

+ 2 3 * + 1 - 4

prefix and postfix notation
proposed by Jan

Lukasiewicz in 1951

Postfix (we see it later) is
often called RPN for

Reverse Polish Notation

tree for (2 + 3) * (1 + – 4) 6

*
+

2 3
+

1 –
4

Postorder traversal:
1. Visit left subtree, in postorder
2. Visit right subtree, in postorder
3. Visit the root

 2 3 + 1 4 - + *

In about 1974, Gries paid
$300 for an HP calculator,
which had some memory
and used postfix notation!
Still works. Come up to
see it. Postfix notation

tree for (2 + 3) * (1 + – 4) 7

*
+

2 3
+

1 –
4

 Cornell tuition Calculator cost Percent
1973 $5030 $300 .0596

2014 $47,050 $60 .00127

Then: (HP 45) RPN. 9 memory locations, 4-level stack, 1-line display
Now: (HP 35S) RPN and infix. 30K user memory, 2-line display

tree for (2 + 3) * (1 + – 4) 8

*
+

2 3
+

1 –
4

 2 3 + 1 4 - + *

Postfix is easy to compute.
Process elements left to
right.

Number? Push it on a stack

Binary operator? Remove
two top stack elements,
apply operator to it, push
result on stack

Unary operator? Remove
top stack element, apply
operator to it, push result on
stack

Postfix notation

tree for (2 + 3) * (1 + – 4) 9

*
+

2 3
+

1 –
4

Inorder traversal:
1. Visit left subtree, in inorder
2. Visit the root
3. Visit right subtree, in inorder

To help out, put parens
around expressions with
operators

(2 + 3) * (1 + (- 4))

Expression trees
10

public class Add extends Exp {
 Exp left;
 Exp right;
 /** Return the value of this exp. */
 public int eval() {return left.eval() + right.eval();}

 /** Return the preorder.*/
 public String pre() {return “+ “ + left.pre() + right.pre(); }

 /** Return the postorder.*/
 public String post() {return left.post() + right.post() + “+ “; }

}

public abstract class Exp {
 public abstract int eval();
 public abstract String pre();
 public abstract String post();
}

Motivation for grammars
11

¨  The cat ate the rat.
¨  The cat ate the rat slowly.

¨  The small cat ate the big rat
slowly.

¨  The small cat ate the big rat
on the mat slowly.

¨  The small cat that sat in the
hat ate the big rat on the mat
slowly, then got sick.

¨  …

� Not all sequences of
words are legal
sentences

 The ate cat rat the
� How many legal

sentences are there?
� How many legal Java

programs
� How do we know what

programs are legal?

http://docs.oracle.com/javase/specs/jls/se7/html/index.html

A Grammar

Sentence → Noun Verb Noun
Noun → boys
Noun → girls
Noun → bunnies
Verb → like

 | see

12

� White space between words does
not matter

� A very boring grammar because the
set of Sentences is finite (exactly 18
sentences)

Our sample grammar has these rules:
A Sentence can be a Noun followed by a Verb followed

 by a Noun
A Noun can be boys or girls or bunnies
A Verb can be like or see

A Grammar

Sentence → Noun Verb Noun
Noun → boys
Noun → girls
Noun → bunnies
Verb → like
Verb → see

13

Grammar: set of rules for
generating sentences of a
language.

Examples of Sentence:
§ boys see bunnies
§ bunnies like girls

� The words boys, girls, bunnies, like, see are
called tokens or terminals

� The words Sentence, Noun, Verb are called
nonterminals

A recursive grammar
14

Sentence → Sentence and Sentence
Sentence → Sentence or Sentence

Sentence → Noun Verb Noun

Noun → boys

Noun → girls

Noun → bunnies
Verb → like

 | see

Grammar more interesting than
previous one because the set of
Sentences is infinite

What makes this set infinite?
Answer:
Recursive definition of
Sentence

Detour
15

What if we want to add a period at the end of every sentence?
Sentence → Sentence and Sentence .

Sentence → Sentence or Sentence .

Sentence → Noun Verb Noun .

Noun → …

Does this work?
No! This produces sentences like:

girls like boys . and boys like bunnies . .

Sentence Sentence

Sentence

Sentences with periods
16

PunctuatedSentence → Sentence .
Sentence → Sentence and Sentence

Sentence → Sentence or Sentence

Sentence → Noun VerbNoun

Noun → boys
Noun → girls

Noun → bunnies

Verb → like

Verb → see

� New rule adds a period only
at end of sentence.

� Tokens are the 7 words plus
the period (.)

� Grammar is ambiguous:
 boys like girls
 and girls like boys
 or girls like bunnies

Grammars for programming languages
17

Grammar describes every possible legal expression
You could use the grammar for Java to list every possible Java
program. (It would take forever.)

Grammar tells the Java compiler how to “parse” a Java program

docs.oracle.com/javase/specs/jls/se7/html/jls-2.html#jls-2.3

Grammar for simple expressions (not the best)
18

E → integer
E → (E + E)
Simple expressions:
¨  An E can be an integer.
¨  An E can be ‘(’ followed by an E

followed by ‘+’ followed by an E
followed by ‘)’

Set of expressions defined by this
grammar is a recursively-defined set

¨  Is language finite or infinite?
¨  Do recursive grammars always

yield infinite languages?

Some legal expressions:
§  2
§  (3 + 34)
§  ((4+23) + 89)

Some illegal expressions:
§  (3
§  3 + 4

Tokens of this grammar:
(+) and any integer

Parsing
19

Use a grammar in two ways:
¨  A grammar defines a

language (i.e. the set of
properly structured
sentences)

¨  A grammar can be used to
parse a sentence (thus,
checking if a string is
asentence is in the language)

To parse a sentence is to build a
parse tree: much like
diagramming a sentence

� Example: Show that
 ((4+23) + 89)
is a valid expression E by
building a parse tree

E

(E) E +

89
(E) E +

4 23

E → integer
E → (E + E)

Ambiguity
20

Grammar is ambiguous if it
allows two parse trees for a
sentence. The grammar below,
using no parentheses, is
ambiguous. The two parse trees
to right show this. We don’t
know which + to evaluate first
in the expression 1 + 2 + 3

E

E E +

E E +

1 2

E → integer
E → E + E

3
20

E

E E

+ E E +

1 2

E → integer
E → E + E

3

Recursive descent parsing
21

Write a set of mutually recursive methods to check if a sentence
is in the language (show how to generate parse tree later).

One method for each nonterminal of the grammar. The method is
completely determined by the rules for that nonterminal. On the
next pages, we give a high-level version of the method for
nonterminal E:

 E → integer
 E → (E + E)

Parsing an E
22

/** Unprocessed input starts an E. Recognize that E, throwing
 away each piece from the input as it is recognized.
 Return false if error is detected and true if no errors.
 Upon return, processed tokens have been removed from input. */
public boolean parseE()

E → integer
E → (E + E)

(2 + (4 + 8) + 9)

before call: already processed unprocessed

(2 + (4 + 8) + 9)

after call: already processed unprocessed
(call returns true)

Specification: /** Unprocessed input starts an E. …*/

23

public boolean parseE() {
 if (first token is an integer) remove it from input and return true;
 if (first token is not ‘(‘) return false else remove it from input;
 if (!parseE()) return false;
 if (first token is not ‘+‘) return false else remove it from input;
 if (!parseE()) return false;
 if (first token is not ‘)‘) return false else remove it from input;
 return true;

}

E → integer
E → (E + E)

Same code used 3 times. Cries out for a method to do that

Illustration of parsing to check syntax
24

E → integer
E → (E + E)

 (1 + (2 + 4))

E

E E

The scanner constructs tokens
25

An object scanner of class Scanner is in charge of the input
String. It constructs the tokens from the String as necessary.

e.g. from the string “1464+634” build the token “1464”, the
token “+”, and the token “634”.

It is ready to work with the part of the input string that has not
yet been processed and has thrown away the part that is
already processed, in left-to-right fashion.

 already processed unprocessed

(2 + (4 + 8) + 9)

Change parser to generate a tree
26

/** … Return a Tree for the E if no error.
 Return null if there was an error*/
public Tree parseE() {

 if (first token is an integer) remove it from input and return true;

 …
}

E → integer
E → (E + E)

if (first token is an integer) {
 Tree t= new Tree(the integer);
 Remove token from input;
 return t;
}

Change parser to generate a tree
27

/** … Return a Tree for the E if no error.
 Return null if there was an error*/
public Tree parseE() {

 if (first token is an integer) … ;
 if (first token is not ‘(‘) return null else remove it from input;
 Tree t1= parse(E); if (t1 == null) return null;
 if (first token is not ‘+‘) return null else remove it from input;
 Tree t2= parse(E); if (t2 == null) return null;
 if (first token is not ‘)‘) return false else remove it from input;
 return new Tree(t1, ‘+’, t2);

}

E → integer
E → (E + E)

Code for a stack machine
28

Code for 2 + (3 + 4)
PUSH 2
PUSH 3
PUSH 4
ADD
ADD

ADD: remove two top values
from stack, add them, and
place result on stack

It’s postfix notation! 2 3 4 + +

S t a c k
2

3

4

7

Code for a stack machine
29

Code for 2 + (3 + 4)
PUSH 2
PUSH 3
PUSH 4
ADD
ADD

ADD: remove two top values
from stack, add them, and
place result on stack

It’s postfix notation! 2 3 4 + +

S t a c k
2
7
9

Use parser to generate code for a stack machine
30

Code for 2 + (3 + 4)
PUSH 2
PUSH 3
PUSH 4
ADD
ADD

ADD: remove two top values
from stack, add them, and
place result on stack

parseE can generate code
as follows:

§ For integer i, return string
“PUSH ” + i + “\n”

§ For (E1 + E2), return a
string containing
w Code for E1
w Code for E2
w “ADD\n”

It’s postfix notation! 2 3 4 + +

Grammar that gives precedence to * over +

31

E -> T { + T }
T -> F { * F }
F -> integer
F -> (E)

2  + 3 * 4
 says do * first

T

E

Notation: { xxx } means
 0 or more occurrences of xxx.
E: Expression T: Term
F: Factor

F

T

F F

T

E

F

T

F F

2  + 3 * 4
Try to do + first, can’t complete tree

Does recursive descent always work?
32

Some grammars cannot be used for recursive descent
Trivial example (causes infinite recursion):

S → b
S → Sa

Can rewrite grammar
S → b
S → bA
A → a
A → aA

For some constructs, recur-
sive descent is hard to use

Other parsing techniques
exist – take the compiler
writing course

Syntactic ambiguity
33

Sometimes a sentence has more than one parse tree
S → A | aaxB
A → x | aAb
B → b | bB

This kind of ambiguity sometimes shows up in
programming languages. In the following, which then does
the else go with?

 if E1 then if E2 then S1 else S2

aaxbb can
be parsed

in two
ways

Syntactic ambiguity
34

This kind of ambiguity sometimes shows up in programming
languages. In the following, which then does the else go with?

 if E1 then if E2 then S1 else S2

This ambiguity actually affects the program’s meaning

Resolve it by either
(1)  Modify the grammar to eliminate the ambiguity (best)
(2)  Provide an extra non-grammar rule (e.g. else goes with

closest if)

Can also think of modifying the language (require end delimiters)

Summary: What you should know
35

¨  preorder, inorder, and postorder traversal. How hey can be
used to get prefix notation, infix notation, and postfix notation
for an expression tree.

¨  Grammars: productions or rules, tokens or terminals,
nonterminals. The parse tree for a sentence of a grammar.

¨  Ambiguous grammar, because a sentence is ambiguous (has
two different parse trees).

¨  You should be able to tell whether string is a sentence of a
simple grammar or not. You should be able to tell whether a
grammar has an infinite number of sentences.

¨  You are not responsible for recursive descent parsing

Exercises
36

Write a grammar and recursive descent parser for sentence
palindromes that ignores white spaces & punctuation

Was it Eliot's toilet I saw? No trace, not one carton
Go deliver a dare, vile dog! Madam, I'm Adam

Write a grammar and recursive program for strings AnBn

AB AABB
AAAAAAABBBBBBB

Write a grammar and recursive program for Java identifiers
<letter> [<letter> or <digit>]0…N

j27, but not 2j7

