Friday is Halloween.
Why did | receive a

Christmas card on
Halloween?

SHORTEST PATHS

Lecture 19
CS2110 - Fall2014

Shortest Paths in Graphs

Problem of finding shortest (min-cost) path in a graph occurs often
1 Find shortest route between lthaca and West Lafayette, IN
o Result depends on notion of cost
u Least mileage... or least time... or cheapest
u Perhaps, expends the least power in the butterfly while
flying fastest
= Many “costs” can be represented as edge weights
Every time you use googlemaps to find directions you are using
a shortest-path algorithm

Dijkstra’ s shortest-path algorithm

Dijsktra describes the algorithm in English:

o When he designed it in 1956, most people were programming in
assembly language!

1 Only one high-level language: Fortran, developed by John
Backus at IBM and not quite finished.

No theory of order-of-execution time —topic yet to be developed.
In paper, Dijsktra says, “my solution is preferred to another one
... “the amount of work to be done seems considerably less.”

Dijkstra, E.W. A note on two problems in Connexion with graphs.
Numerische Mathematik 1,269-271 (1959).

10/29/14

Readings?

o Read chapter 28

Dijkstra’ s shortest-path algorithm

Edsger Dijkstra, in an interview in 2010 (CACM):

... the algorithm for the shortest path, which I designed in about
20 minutes. One morning I was shopping in Amsterdam with my
young fiance, and tired, we sat down on the cafe terrace to drink a
cup of coffee, and I was just thinking about whether I could do
this, and I then designed the algorithm for the shortest path. As I
said, it was a 20-minute invention. [Took place in 1956]

Dijkstra, E.W. A note on two problems in Connexion with graphs. Numerische
Mathematik 1, 269-271 (1959).

Visit for all sorts of information on Dijkstra and his
contributions. As a historical record, this is a gold mine.

1968 NATO Conference on
Software Engineering, Garmisch, Germany

Term “software engineering” coined for this conference
6

1968 NATO Conference on
Software Engineering, Garmisch, Germany

10/29/14

Marktoberdorf
Summer School,
Germany, 1998

(Each year,~100
PhD students
from around the
world would
get two weeks
of lectures by
CS faculty.

Dijkstra’ s shortest path algorithm
The n (> 0) nodes of a graph numbered 0..n-1.

Each edge has a positive weight.
weight(vl, v2) is the weight of the edge from node v1 to v2.
Some node v be selected as the start node.

Calculate length of shortest path from v to each node.

Use an array L[0..n-1]: for each node w, store in
L[w] the length of the shortest path from v to w.

L[0]=2

0 L[1]1=5

Y S ot W Lzl =6
) ® L[3]=7

o—— L[4]=0

Dijkstra’ s shortest path algorithm

Develop algorithm, not just present it.
Need to show you the state of affairs —the relation among all
variables— just before each node i is given its final value L[i].

This relation among the variables is an invariant, because
it is always true.

Because each node i (except the first) is given L[0] =2
its final value L[i] during an iteration of a loop, L[1]=5

the invariant is called a loop invariant. L[2]=6
L[31=7
L[4]1=0

Settled Frontier Far off
S F

The loop invariant

(edges leaving the black set and
edges from the blue to the red set
are not shown)

1. For a Settled node s, L[s] is length of shortest v — s path.
2. All edges leaving S go to F.
3. For a Frontier node f, L[f] is length of shortest v — f path

using only red nodes (except for f) @—@-----@—@f
4. For a Far-off node b, L[b] = o

5.L[v]=0,L[w]>0forw#v 0

Settled Frontier Far off Theorem about the invariant
S F

v ----@—@f

Llg] = Lf] >

1. For a Settled node s, L[s] is length of shortest v — r path.

2. All edges leaving S go to F.

3. For a Frontier node f, L[f] is length of shortest v — f path
using only Settled nodes (except for f).

4. For a Far-off node b, L[b] =o. 5.L[v] =0,L[w] >0 forw # v

Theorem. For a node f in F with minimum L value (over nodes in
F), L[f] is the length of the shortest path from v to f.

Case1: visinS.

Case 2: v is in F. Note that L[v] is 0; it has mini‘rznum L value

The algorithm For all w, L[w]=; L[v]=0;

S F Faroff p= {v3}; 8= {};

1. For s, L[s] is length of
shortest v— s path.

2. Edges leaving Sgo to F.

3. For f, L[f] is length of
shortest v — f path using
red nodes (except for f).

4. For b in Far off, L[b] =

5. LIvI=0,L[w]>0for w# Vv 1405y question 1:

How does the loop start? What
is done to truthify the invariant?

Theorem: For a node f in F
with min L value, L[f] is
shortest path length

13

10/29/14

The algorithm For all w, L[w]=%; L[v]=0;
S F Faroff p= {v3}; 8= {};

while F=z {} {

—

. For s, L[s] is length of
shortest v — s path.

e

Edges leaving S go to F.
. For f, L[f] is length of
shortest v — f path using
red nodes (except for f).
4. For b in Far off, L[b] = }
5.L[v]=0,L[w]>0forw=zv Loopy question 2:
Theorem: For a node f in F
with min L value, L[f] is
shortest path length

w

When does loop stop? When is
array L completely calculated?

14

The algorithm
S F

For all w, L[w]=; L[v]=0;

Fargll F= {v}: 8= {}:

while F=z {} {
f=node in F with min L value;

1. For s, L[s] is length of Remove f from F, add it to S;
shortest v — s path.

2. Edges leaving S go to F.

3. For f, L[f] is length of
shortest v — f path using
red nodes (except for f).

4. For b, L[b] =

5. L[v]=0,L[w]>0 forw#v

Theorem: For a node f in F

with min L value, L[f] is

shortest path length

Loopy question 3:
How is progress toward
termination accomplished?

15

The algorithm For all w, L[w]=; L[v]=0;
S F Far off p= {v}; S={}
while Fz {} {
f=node in F with min L value;
Remove f from F, add it to S;
for each edge (f,w) {
if (L[w] is) add w to F;
if (L[f] + weight (f,w) < L[w])
L[w]= L[f] + weight(f,w);

—

. For s, L[s] is length of
shortest v — s path.

b

Edges leaving S go to F.
. For f, L[f] is length of
shortest v — f path using
red nodes (except for f).
4. For b,L[b] =

S5.L[v]=0,L[w]>0forw=#vVv .
Loopy question 4:

w

Algorithm is finished

Theorem: For a node fin F
with min L value, L[f] is
shortest path length

How is the invariant
maintained?

About implementation

-

For all w, L[w]=; L[v]=0;

F= {v} =35

while F= {} {
f=node in F with min L value;
Remove f from F, additta S.
for each edge (f,w) {

T A S T Nadd o to L.
T

1. No need to implement S.
2. Implement F as a min-heap.
3. Instead of 0, use

Integer MAX_VALUE.

if (L[w] == Integer MAX_VAL) {
L[w]= L[f] + weight(f w);
=i —weightthwr<bEtwh addwto F;
—Lbul=Lfneighttbug,) else L[w]= Math.min(L[w],
¥ L[f] + weight(f,w));

Execution time
|n nodes, reachable from v. e = n-1 edges

n-1 < e < n*n

For all w, L[w]=; L|v]=0; O(n)
F={v}; o)
while F # {} { O(n) outer loop:

f= node in F with min L value; O(n) n iterations.

Remove f from F; O(nlogn) |Condition
for each edge (f,w) { O(n +e) evalugted
if (L[w] == Integer MAX_VAL) { O(e) n+1 times.
L{w]= L[f] + weight(f,w); O(n-1) in.ner l'oop:
add wto F; O(n log n) [¢ lterations.
} Condition
else L[w]= O((e-(n-1)) log n) evalua‘ted
Math.min(L[w], L[f] + weight(f,w)); n + ¢ times.

¥
1 Complete graph: O(n? log n). Sparse graph: O(n log n)

