
10/29/14 

1 

SHORTEST PATHS 
Lecture 19 
CS2110 – Fall2014 

1 

Friday is Halloween. 
Why did I receive a 

  
Christmas card on 

Halloween? 

Readings? 

¨  Read chapter 28 
 

2 

Shortest Paths in Graphs 

Problem of finding shortest (min-cost) path in a graph occurs often 
¤  Find shortest route between Ithaca and West Lafayette, IN 
¤  Result depends on notion of cost 

n Least mileage… or least time… or cheapest 
n Perhaps, expends the least power in the butterfly while 

flying fastest 
n Many “costs” can be represented as edge weights 

Every time you use googlemaps to find directions you are using 
a shortest-path algorithm 

3 

4

Dijkstra’s shortest-path algorithm 
4 

Edsger Dijkstra, in an interview in 2010 (CACM):  
 … the algorithm for the shortest path, which I designed in about 
20 minutes. One morning I was shopping in Amsterdam with my 
young fiance, and tired, we sat down on the cafe terrace to drink a 
cup of coffee, and I was just thinking about whether I could do 
this, and I then designed the algorithm for the shortest path. As I 
said, it was a 20-minute invention. [Took place in 1956] 
 
Dijkstra, E.W. A note on two problems in Connexion with graphs. Numerische 
Mathematik 1, 269–271 (1959). 
Visit http://www.dijkstrascry.com for all sorts of information on Dijkstra and his 
contributions. As a historical record, this is a gold mine. 

5

Dijkstra’s shortest-path algorithm 
5 

Dijsktra describes the algorithm in English: 
¨  When he designed it in 1956, most people were programming in 
assembly language! 
¨  Only one high-level language: Fortran, developed by John 
Backus at IBM and not quite finished. 
No theory of order-of-execution time —topic yet to be developed. 
In paper, Dijsktra says, “my solution is preferred to another one 
… “the amount of work to be done seems considerably less.” 
 
Dijkstra, E.W. A note on two problems in Connexion with graphs. 
Numerische Mathematik 1, 269–271 (1959). 

6

1968 NATO Conference on 
Software Engineering, Garmisch, Germany 

6 

Dijkstra 

Gries 

Term “software engineering” coined for this conference 



10/29/14 

2 

7

1968 NATO Conference on 
Software Engineering, Garmisch, Germany 

7 

8

8 

Marktoberdorf 
Summer School, 
Germany, 1998 
 
(Each year,~100 
PhD students 
from around the 
world would 
get two weeks 
of lectures by 
CS faculty. 
 
 
 

4

0

1

2 3

9

Dijkstra’s shortest path algorithm 
 
 

The n (> 0) nodes of a graph numbered 0..n-1.

L[0] = 2
L[1] = 5
L[2] = 6
L[3] = 7
L[4] = 0

v
4

2 4
1

3
3

Each edge has a positive weight.

Some node v be selected as the start node.

Use an array L[0..n-1]: for each node w, store in 
L[w] the length of the shortest path from v to w.

weight(v1, v2) is the weight of the edge from node v1 to v2.

Calculate length of shortest path from v to each node.

10

Dijkstra’s shortest path algorithm 
 
 Develop algorithm, not just present it.

Need to show you the state of affairs —the relation among all 
variables— just before each node i  is given its final value L[i].

This relation among the variables is an invariant, because 
it is always true.

Because each node i (except the first) is given 
its final value L[i] during an iteration of a loop, 
the invariant is called a loop invariant.

L[0] = 2
L[1] = 5
L[2] = 6
L[3] = 7
L[4] = 0

11

1. For a Settled node s, L[s] is length of shortest v → s path.   
2. All edges leaving S go to F.   
3. For a Frontier node f, L[f] is length of shortest v → f path
    using only red nodes (except for f)
4. For a Far-off node b, L[b] = ∞ 

Frontier 
F

Settled 
S

   Far off

f

4
2 4

1
3

34

0

1

2 3

f

(edges leaving the black set and 
edges from the blue to the red set 
are not shown)

5. L[v] = 0, L[w] > 0 for w ≠ v

The loop invariant 
 
 

v

12

1. For a Settled node s, L[s] is length of shortest v → r path.   
2. All edges leaving S go to F.   
3. For a Frontier node f, L[f] is length of shortest v → f path
    using only Settled nodes (except for f).
4. For a Far-off node b, L[b] = ∞.        

Theorem. For a node f in F with minimum L value (over nodes in 
F), L[f] is the length of the shortest path from v to f.

Frontier 
F

Settled 
S

Far off

f

Theorem about the invariant

fvg

g

Case 1: v is in S.
Case 2: v is in F. Note that L[v] is 0; it has minimum L value

L[g] ≥ L[f]

5. L[v] = 0, L[w] > 0 for w ≠ v
.



10/29/14 

3 

13

1.  For s, L[s] is length of
     shortest v→ s path.   
2.  Edges leaving S go to F.   

 S                  F          Far off

3.  For f, L[f] is length of
     shortest v → f path using
     red nodes (except for f).
4.  For b in Far off, L[b] = ∞
5.  L[v] = 0, L[w] > 0 for w ≠ v
 

For all w, L[w]= ∞;   L[v]= 0;
F=  { v };  S=  { };

Theorem: For a node f in F
with min L value, L[f] is
shortest path length

v

The algorithm 

Loopy question 1: 
How does the loop start? What 
is done to truthify the invariant?

14

When does loop stop? When is 
array L completely calculated?

while                 {
    

}

1.  For s, L[s] is length of
     shortest v → s path.   
2.  Edges leaving S go to F.   

 S                  F          Far off

3.  For f, L[f] is length of
     shortest v → f path using
     red nodes (except for f).
4.  For b in Far off, L[b] = ∞
5. L[v] = 0, L[w] > 0 for w ≠ v

For all w, L[w]= ∞;   L[v]= 0;
F=  { v };  S=  { };

Theorem: For a node f in F
with min L value, L[f] is
shortest path length

F ≠  {}

The algorithm 

Loopy question 2: 

15

How is progress toward 
termination accomplished?

while                 {
    

}

f= node in F with min L value; 

Remove f from F, add it to S;1.  For s, L[s] is length of
     shortest v → s path.   
2.  Edges leaving S go to F.   

 S                  F          Far off

3.  For f, L[f] is length of
     shortest v →  f path using
     red nodes (except for f).
4.  For b, L[b] = ∞
5.  L[v] = 0, L[w] > 0 for w ≠ v

For all w, L[w]= ∞;   L[v]= 0;
F=  { v };  S=  { };

Theorem: For a node f in F
with min L value, L[f] is
shortest path length

f
F ≠  {}

The algorithm 

Loopy question 3: 

f

16

How is the invariant 
maintained?

while                 {
    

}

f= node in F with min L value; 

Remove f from F, add it to S;1.  For s, L[s] is length of
     shortest v → s path.   
2.  Edges leaving S go to F.   

 S                  F          Far off

3.  For f, L[f] is length of
     shortest v → f path using
     red nodes (except for f).
4.  For b, L[b] = ∞
5. L[v] = 0, L[w] > 0 for w ≠ v

For all w, L[w]= ∞;   L[v]= 0;
F=  { v };  S=  { };

Theorem: For a node f in F
with min L value, L[f] is
shortest path length

F ≠  {}

for each edge (f,w) {
   
   

}

if (L[w]  is ∞) add w to F;

if (L[f] + weight (f,w) < L[w])
    L[w]= L[f] + weight(f,w);

The algorithm 

Loopy question 4: 

f
w

w

Algorithm is finished

w

17

For all w, L[w]= ∞;  L[v]= 0;
F=  { v };  S=  { };
while F ≠  {}  {
   f= node in F with min L value;
       Remove f from F, add it to S;
   for each edge (f,w) {
     if (L[w]  is ∞) add w to F;
     if (L[f] + weight (f,w) < L[w])
       L[w]= L[f] + weight(f,w);
  }
}

About implementation 1. No need to implement S.
2. Implement F as a min-heap.
3. Instead of ∞, use

  Integer.MAX_VALUE.

if (L[w] == Integer.MAX_VAL) {
    L[w]=  L[f] + weight(f,w);
    add w to F;
} else  L[w]= Math.min(L[w],
                 L[f] + weight(f,w));

S F

18

For all w, L[w]= ∞;  L[v]= 0;
F=  { v };
while F  ≠  {} {
   f=  node in F with min L value;
   Remove f from F;
   for each edge (f,w) {
      if (L[w] == Integer.MAX_VAL) {
           L[w]=  L[f] + weight(f,w);
           add w to F;
      }
      else L[w]=  
           Math.min(L[w], L[f] + weight(f,w));
   }
}

Execution time 
S F

n nodes, reachable from v. e ≥ n-1 edges
                             n–1  ≤  e  ≤  n*n

O(n)
O(n log n)

O(e)
   O(n-1)
   O(n log n)

O((e-(n-1)) log n)

O(n)

O(n + e)

outer loop:
n iterations.
Condition 
evaluated
n+1 times.
inner loop:
e iterations.
Condition 
evaluated
n + e times.

 Complete graph: O(n2 log n). Sparse graph: O(n log n)

  
O(n)
O(1)


