
10/28/14

1

GRAPHS
Lecture 18

CS2110 – Fall 2014

Graph Algorithms
2

• Search
– depth-first search
– breadth-first search

• Shortest paths
– Dijkstra's algorithm

• Minimum spanning trees
– Prim's algorithm
– Kruskal's algorithm

Depth-First Search
3

Given a graph and one of it’s nodes u (say node 1 below).

We want to “visit” each node reachable from u ONCE
(nodes 1, 0, 2, 3, 5).

4

1

0 5

2 3

6

There are many paths
to some nodes.

How to visit nodes
only once, efficiently,
and not do extra
work?

Depth-First Search
4

boolean[] visited;

node u is visited means: visited[u] is true
To visit u means to: set visited[u] to true

Node v is REACHABLE from node u if
there is a path (u, …, v) in which all
nodes of the path are unvisited.

4

1

0 5

2 3

6

Suppose all nodes are
unvisited.

Nodes REACHABLE
from node 1:
1, 0, 2, 3, 5

Nodes REACHABLE
from 4: 4, 5, 6.

Depth-First Search
5

boolean[] visited;

node u is visited means: visited[u] is true
To visit u means to: set visited[u] to true

Node u is REACHABLE from node v if
there is a path (u, …, v) in which all
nodes of the path are unvisited.

4

1

0 5

2 3

6

Red nodes: visited.
Blue nodes: unvisited

Nodes REACHABLE
from 1: 1, 0, 5

Nodes REACHABLE
from 4: none

Depth-First Search
6

/** Node u is unvisited. Visit all nodes
 that are REACHABLE from u. */
public static void dfs(int u) {
}

Let u be 1
The nodes that are
REACHABLE
from node 1 are
1, 0, 2, 3, 5

4

1

0 5

2
3

6

4

1

0 5

2
3

6

Start End

10/28/14

2

Depth-First Search
7

/** Node u is unvisited. Visit all nodes
 that are REACHABLE from u. */
public static void dfs(int u) {

}

Let u be 1
The nodes that are
REACHABLE
from node 1 are
1, 0, 2, 3, 5

4

1

0 5

2 3

6

visited[u]= true;

Depth-First Search
8

/** Node u is unvisited. Visit all nodes
 that are REACHABLE from u. */
public static void dfs(int u) {

}

Let u be 1
The nodes to be
visited are
0, 2, 3, 5

4

1

0 5

2 3

6

visited[u]= true;

for each edge (u, v) leaving u:
 if v is unvisited then dfs(v);

Have to do dfs on
all unvisited
neighbors of u

Depth-First Search
9

/** Node u is unvisited. Visit all nodes
 that are REACHABLE from u. */
public static void dfs(int u) {

}

Let u be 1
Nodes to be visited
are: 0, 2, 3, 5

4

1

0 5

2 3

6

visited[u]= true;

for each edge (u, v) leaving u:
 if v is unvisited then dfs(v);

Suppose the loop
visits neighbors in
numerical order.
Then dfs(1) visits
the nodes in this
order: 1, 0, 2, 3, 5
Depth First!

Depth-First Search
10

/** Node u is unvisited. Visit all nodes
 that are REACHABLE from u. */
public static void dfs(int u) {

}

visited[u]= true;

for each edge (u, v) leaving u:
 if v is unvisited then dfs(v);

Notes:

Suppose n nodes are REACHABLE
along e edges (in total). What is
Worst-case execution?
Worst-case space?

Depth-First Search
11

/** Node u is unvisited. Visit all nodes
 that are REACHABLE from u. */
public static void dfs(int u) {

}

visited[u]= true;
for each edge (u, v) leaving u:
 if v is unvisited then dfs(v);

Example: Use different way (other than
array visited) to know whether a node
has been visited

That’s all there is
to the basic dfs.

You may have to
change it to fit a

particular situation.

Example: We really haven’t said what
data structures are used to implement
the graph.

If you don’t have
this spec and you

do something
different, it’s

probably wrong.

Depth-First Search in an OO fashion
12

Each node of the
graph is an Object

of class Node

public class Node {
 boolean visited;
 List<Node> neighbors;

}

/** This node is unvisited. Visit all nodes
 REACHABLE from this node */
public void dfs() {

}

visited= true;
for (Node n: neighbors) {
 if (!n.visited) n.dfs()
}

No need for a
parameter. The

object is the node

10/28/14

3

Depth-First Search written iteratively
13

/** Node u is unvisited. Visit all node REACHABLE from u. */
public static void dfs(int u) {
 Stack s= (u); // Not Java
 // inv: all nodes that have to be visited are
 // REACHABLE from some node in s
 while () {

 }
}

s is not empty
u= s.pop(); // Remove top stack node, put in u
if (u has not been visited) {

}

for each edge (u, v) leaving u:
 s.push(v);

visit u;

Depth-First Search written iteratively
14

/** u is unvisited. Visit all nodes REACHABLE from u. */
public static void dfs(int u) {
 Stack s= (u);
 while (s is not empty) {
 u= s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v):
 s.push(v);
 }
 }
}

4

1

2 5

0
3

Call dfs(1)

stack s
 1

Depth-First Search written iteratively
15

/** u is unvisited. Visit all nodes REACHABLE from u. */
public static void dfs(int u) {
 Stack s= (u);
 while (s is not empty) {
 u= s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v):
 s.push(v);
 }
 }
}

4

1

2 5

0
3

Call dfs(1)

stack s
 1

Iteration 0

0
2
5

Depth-First Search written iteratively
16

/** u is unvisited. Visit all nodes REACHABLE from u. */
public static void dfs(int u) {
 Stack s= (u);
 while (s is not empty) {
 u= s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v):
 s.push(v);
 }
 }
}

4

1

2 5

0
3

Call dfs(1)

stack s

Iteration 1

0
2
5
2
5

3
5
2
5

Yes, 5 is put on stack twice,
once for each edge to it. It
will be visited only once.

Using a
stack causes
depth-first
search

Breadth-First Search
17

/** Node u is unvisited. Visit all node REACHABLE from u. */
public static void dfs(int u) {
 Queue q= (u); // Not Java
 // inv: all nodes that have to be visited are
 // REACHABLE from some node in q
 while () {

 }
}

q is not empty
u= q.removeFirst(); // Remove first node, put in u
if (u has not been visited) {

}

for each edge (u, v) leaving u:
 q.append(v);

visit u;

Breadth-First Search
18

/** u is unvisited. Visit all nodes REACHABLE from u. */
public static void dfs(int u) {
 Queue q= (u);
 while (q is not empty) {
 u= q.popFirst();
 if (u has not been visited) {
 visit u;
 for each edge (u, v):
 append(v);
 }
 }
}

4

1

2 5

0
3

Call dfs(1)

Queue q
 1

10/28/14

4

Breadth-First Search
19

/** u is unvisited. Visit all nodes REACHABLE from u. */
public static void dfs(int u) {
 Queue q= (u);
 while (q is not empty) {
 u= q.popFirst();
 if (u has not been visited) {
 visit u;
 for each edge (u, v):
 append(v);
 }
 }
}

4

1

2 5

0
3

Call dfs(1)

Queue q
 1

Iteration 0

0 2 5

Breadth-First Search
20

/** u is unvisited. Visit all nodes REACHABLE from u. */
public static void dfs(int u) {
 Queue q= (u);
 while (q is not empty) {
 u= q.popFirst();
 if (u has not been visited) {
 visit u;
 for each edge (u, v):
 append(v);
 }
 }
}

4

1

2 5

0
3

Call dfs(1)

Queue q

Iteration 1

0 2 5 2 5 2 5 3 5

Breadth-First Search
21

/** u is unvisited. Visit all nodes REACHABLE from u. */
public static void dfs(int u) {
 Queue q= (u);
 while (q is not empty) {
 u= q.popFirst();
 if (u has not been visited) {
 visit u;
 for each edge (u, v):
 append(v);
 }
 }
}

4

1

2 5

0
3

Call dfs(1)

Queue q

Iteration 2

2 5 3 5 5 3 5

Breadth first:
(1) Node u
(2) All nodes 1 edge from u
(3) All nodes 2 edges from u
(4) All nodes 3 edges from u
…

