

PRIORITY QUEUES AND
 HEAPS

Lecture 16
CS2110 Fall 2014

Reminder: A4 Collision Detection

\square Due tonight by midnight

Readings and Homework

Read Chapter 26 "A Heap Implementation" to learn about heaps

Exercise: Salespeople often make matrices that show all the great features of their product that the competitor's product lacks. Try this for a heap versus a BST. First, try and sell someone on a BST: List some desirable properties of a BST that a heap lacks. Now be the heap salesperson: List some good things about heaps that a BST lacks. Can you think of situations where you would favor one over the other?

With ZipUltra heaps, you've got it made in the shade my friend!

The Bag Interface

A Bag:

```
interface Bag<E> {
    void insert(E obj);
    E extract(); //extract some element
    boolean isEmpty();
}
```

Like a Set except that a value can be in it more than once. Example: a bag of coins

Refinements of Bag: Stack, Queue, PriorityQueue

Stacks and Queues as Lists

- Stack (LIFO) implemented as list
- insert(), extract() from front of list
- Queue (FIFO) implemented as list
- insert() on back of list, extract() from front of list
- These operations are O(1)

last

Priority Queue

- A Bag in which data items are Comparable
- lesser elements (as determined by compareTo ()) have higher priority
- extract () returns the element with the highest priority $=$ least in the compareTo () ordering
- break ties arbitrarily

Examples of Priority Queues

Scheduling jobs to run on a computer default priority = arrival time
priority can be changed by operator
Scheduling events to be processed by an event handler priority = time of occurrence

Airline check-in
first class, business class, coach
FIFO within each class

java.util.PriorityQueue<E>

```
boolean add(E e) {...} //insert an element (insert)
void clear() {...} //remove all elements
E peek() {...} //return min element without removing
    //(null if empty)
E poll() {...} //remove min element (extract)
        //(null if empty)
int size() {...}
```


Priority Queues as Lists

- Maintain as unordered list
- insert() put new element at front - O(1)
- extract() must search the list - O(n)
- Maintain as ordered list
- insert() must search the list - O(n)
- extract() get element at front - O(1)
- In either case, $O\left(\mathrm{n}^{2}\right)$ to process n elements

Can we do better?

Important Special Case

- Fixed number of priority levels $0, \ldots, p-1$
- FIFO within each level
- Example: airline check-in
- insert () - insert in appropriate queue - O(1)
- extract () - must find a nonempty queue - O(p)

Heaps

- A heap is a concrete data structure that can be used to implement priority queues
- Gives better complexity than either ordered or unordered list implementation:

$$
\begin{array}{ll}
- \text { insert () : } & O(\log n) \\
- \text { extract }(): ~ & O(\log n)
\end{array}
$$

- O(n log n) to process n elements
- Do not confuse with heap memory, where the Java virtual machine allocates space for objects - different usage of the word heap

Heaps

- Binary tree with data at each node
- Satisfies the Heap Order Invariant:

The least (highest priority) element of any subtree is found at the root of that subtree.

- Size of the heap is "fixed" at n. (But can usually double n if heap fills up)

Heaps

Smallest element in any subtree
is always found at the root of that subtree

Note: 19, 20 < 35: Smaller elements can be deeper in the tree!

Examples of Heaps

- Ages of people in family tree
- parent is always older than children, but you can have an uncle who is younger than you
- Salaries of employees of a company
- bosses generally make more than subordinates, but a VP in one subdivision may make less than a Project Supervisor in a different subdivision

Balanced Heaps

These add two restrictions:

1. Any node of depth $<\mathrm{d}-1$ has exactly 2 children, where d is the height of the tree

- implies that any two maximal paths (path from a root to a leaf) are of length d or $d-1$, and the tree has at least $2^{\text {d }}$ nodes
- All maximal paths of length d are to the left of those of length d - 1

Example of a Balanced Heap

Store in an ArrayList or Vector

- Elements of the heap are stored in the array in order, going across each level from left to right, top to bottom
- The children of the node at array index n are at indices $2 n+1$ and $2 n+2$
- The parent of node n is node $(n-1) / 2$

Store in an ArrayList or Vector

children of node n are found at $2 n+1$ and $2 n+2$

Store in an ArrayList or Vector

children of node n are found at $2 n+1$ and $2 n+2$

insert()

- Put the new element at the end of the array
- If this violates heap order because it is smaller than its parent, swap it with its parent
- Continue swapping it up until it finds its rightful place
- The heap invariant is maintained!

insert()

insert()

- Time is $O(\log n)$, since the tree is balanced
- size of tree is exponential as a function of depth
- depth of tree is logarithmic as a function of size

insert()

```
/** An instance of a priority queue */
class PriorityQueue<E> extends java.util.Vector<E> {
    /** Insert e into the priority queue */
    public void insert(E e) {
    super.add(e); //add to end of array
    bubbleUp(size() - 1); // given on next slide
    }
}
```


insert()

```
class PriorityQueue<E> extends java.util.Vector<E> {
    /** Bubble element k up the tree */
    private void bubbleUp(int k) {
    int p= (k-1)/2; // p is the parent of k
    // inv: Every element satisfies the heap property
    // except element k might be smaller than its parent
    while (k>0 && get(k).compareTo(get(p)) < 0) {
        "swap elements k and p";
        k= p;
        p= (k-1)/2;
    }
}
```


extract()

- Remove the least element - it is at the root
- This leaves a hole at the root - fill it in with the last element of the array
- If this violates heap order because the root element is too big, swap it down with the smaller of its children
- Continue swapping it down until it finds its rightful place
- The heap invariant is maintained!

extract()

extract()

Time is $O(\log n)$, since the tree is balanced

extract()


```
/** Bubble the root down to its heap position.
    Pre: tree is a heap except: root may be >than a child */
private void bubbleDown() {
    int k= 0;
    // Set c to smaller of k's children
    int c= 2*k + 2; // k's right child
    if (c > size()-1 || get(c-1).compareTo(get(c)) < 0) c--;
    // inv tree is a heap except: element k may be > than a child.
    // Also k's smallest child is element c
    while (c < size() && get(k).compareTo(get(c) > 0) {
    Swap elements at k and c;
    k= c;
    c= 2*k + 2; // k's right child
    if (c > size()-1 || get(c-1).compareTo(get(c)) < 0) c--;
    }
}
```

51

HeapSort

Given a Comparable [] array of length n,

- Put all n elements into a heap - $O(n \log n)$
- Repeatedly get the min $\quad-O(n \log n)$

```
public static void heapSort(Comparable[] b)
{
    PriorityQueue<Comparable> pq=
        new PriorityQueue<Comparable>(b);
    for (int i = 0; i < b.length; i++) {
        b[i] = pq.extract();
    }
}
```

One can do the two stages in the array itself, in place, so algorithm takes O(1) space.

Many uses of priority queues \& heaps

\square Mesh compression: quadric error mesh simplification
\square Event-driven simulation: customers in a line
\square Collision detection: "next time of contact" for colliding bodies
\square Data compression: Huffman coding
\square Graph searching: Dijkstra's algorithm, Prim's algorithm
\square Al Path Planning: A* search
\square Statistics: maintain largest M values in a sequence
\square Operating systems: load balancing, interrupt handling
\square Discrete optimization: bin packing, scheduling
\square Spam filtering: Bayesian spam filter

