
PRIORITY QUEUES AND 
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Reminder: A4 Collision Detection 

¨  Due tonight by midnight 
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Readings and Homework 

Read Chapter 26 “A Heap Implementation” to learn about heaps 
 

Exercise: Salespeople often make matrices that show all the great 
features of their product that the competitor’s product lacks.  Try this 
for a heap versus a BST.  First, try and  

sell someone on a BST: List some  
desirable properties of a BST 
that a heap lacks.  Now be the heap 
salesperson: List some good things  
about heaps that a BST lacks.  Can  
you think of situations where you  
would favor one over the other? 
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With ZipUltra heaps, you’ve got it 
made in the shade my friend! 



The Bag Interface 

A Bag: 

interface Bag<E> {!
   void insert(E obj);!
   E extract(); //extract some element!
   boolean isEmpty();!
}!

Refinements of Bag: Stack, Queue, PriorityQueue 
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Like a Set except that a value can be in it more 
than once. Example: a bag of coins 



Stacks and Queues as Lists 

•  Stack (LIFO) implemented as list 
– insert(), extract() from front of list 

•  Queue (FIFO) implemented as list 

– insert() on back of list, extract() from front of list 

•  These operations are O(1) 

55 120 19 16 first 

last 
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Priority Queue 

•  A Bag in which data items are Comparable 

•  lesser elements (as determined by compareTo()) have 
higher priority 

• extract() returns the element with the highest priority = 
least in the compareTo() ordering 

•  break ties arbitrarily 
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Scheduling jobs to run on a computer 
default priority = arrival time 
priority can be changed by operator 
 
Scheduling events to be processed by an event handler 
priority = time of occurrence 
 
Airline check-in 
first class, business class, coach 
FIFO within each class 

Examples of Priority Queues 
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java.util.PriorityQueue<E> 
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boolean add(E e) {...} //insert an element (insert)!
!
void clear() {...} //remove all elements!
!
E peek() {...} //return min element without removing!
               //(null if empty)!
!
E poll() {...} //remove min element (extract)!
               //(null if empty) !
!
int size() {...}!



Priority Queues as Lists 
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•  Maintain as unordered list 
– insert()      put new element at front – O(1) 
– extract()    must search the list – O(n) 

•  Maintain as ordered list 
– insert()      must search the list – O(n) 
– extract()     get element at front – O(1) 

•  In either case, O(n2) to process n elements 
 

Can we do better? 



Important Special Case 
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• Fixed number of priority levels 0,...,p – 1 
• FIFO within each level 
• Example: airline check-in 
 
• insert()– insert in appropriate queue – O(1) 
• extract()– must find a nonempty queue – O(p) 



Heaps 
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•  A heap is a concrete data structure that can be used 
to implement priority queues 

•  Gives better complexity than either ordered or 
unordered list implementation: 
– insert():  O(log n) 
– extract(): O(log n) 

•  O(n log n) to process n elements 
•  Do not confuse with heap memory, where the Java 

virtual machine allocates space for objects – different 
usage of the word heap 



Heaps 
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•  Binary tree with data at each node 
•  Satisfies the Heap Order Invariant: 

 

•  Size of the heap is “fixed” at n.  (But can usually double 
n if heap fills up) 

The least (highest priority) element of any 
subtree is found at the root of that subtree. 
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14 6 

21 19 8 35 

22 55 38 10 20 

Smallest element in any subtree 
is always found at the root 
of that subtree 

Note: 19, 20 < 35: Smaller elements 
can be deeper in the tree! 

Heaps 
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Examples of Heaps 
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• Ages of people in family tree 
– parent is always older than children, but you can have 

an uncle who is younger than you 

• Salaries of employees of a company 
– bosses generally make more than subordinates, but a 

VP in one subdivision may make less than a Project 
Supervisor in a different subdivision 



Balanced Heaps 
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These add two restrictions: 
 

1.  Any node of depth < d – 1 has exactly 2 children, 
where d is the height of the tree 

–  implies that any two maximal paths (path from a root 
to a leaf) are of length d or d – 1, and the tree has at 
least 2d nodes 

•  All maximal paths of length d are to the left of those of 
length d – 1 



Example of a Balanced Heap 
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d = 3 
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•  Elements of the heap are stored in the array in order, 
going across each level from left to right, top to bottom 

 
•  The children of the node at array index n are at indices 

2n + 1 and 2n + 2 

•  The parent of node n is node (n – 1)/2 

Store in an ArrayList or Vector 
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0 

1 2 

3 4 5 6 

7 8 9 10 11 

children of node n are found at 2n + 1 and 2n + 2 
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21 19 8 35 

22 55 38 10 20 

Store in an ArrayList or Vector 
18 



Store in an ArrayList or Vector 
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0 1 2 3 4 5 6 7 8 9 10 11 
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children of node n are found at 2n + 1 and 2n + 2 
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•  Put the new element at the end of the array 

•  If this violates heap order because it is smaller than its 
parent, swap it with its parent 

•  Continue swapping it up until it finds its rightful place 

•  The heap invariant is maintained! 

insert() 
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insert() 



4 

14 6 

21 19 8 35 

22 55 38 10 20 5 

22 

insert() 



4 

14 6 

21 

19 

8 35 

22 55 38 10 20 

5 

23 

insert() 



4 

14 

6 

21 

19 

8 35 

22 55 38 10 20 

5 

24 

insert() 



4 

14 

6 

21 

19 

8 35 

22 55 38 10 20 

5 

25 

insert() 



4 

14 

6 

21 

19 

8 35 

22 55 38 10 20 

5 

2 

26 

insert() 



4 

14 

6 

21 

19 

8 

35 22 55 38 10 20 

5 

2 

27 

insert() 



4 

14 

6 

21 

19 

8 

35 22 55 38 10 20 

2 

5 

28 

insert() 



2 

14 

6 

21 

19 

8 

35 22 55 38 10 20 

4 

5 

29 

insert() 



2 

14 

6 

21 

19 

8 

35 22 55 38 10 20 

4 

5 

30 

insert() 



• Time is O(log n), since the tree is balanced 

– size of tree is exponential as a function of depth 

– depth of tree is logarithmic as a function of size 
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insert() 



/** An instance of a priority queue */!
class PriorityQueue<E> extends java.util.Vector<E> {!
   !
  /** Insert e into the priority queue */!
  public void insert(E e) {!
    super.add(e); //add to end of array!
    bubbleUp(size() - 1); // given on next slide!
  }!
}!

32 

insert() 



class PriorityQueue<E> extends java.util.Vector<E> {!
 !
 /** Bubble element k up the tree */ !
 private void bubbleUp(int k) {!
!
    int p= (k-1)/2;   // p is the parent of k!
!
    // inv: Every element satisfies the heap property!
    // except element k might be smaller than its parent!
    while (k>0  &&  get(k).compareTo(get(p)) < 0) {!
         “swap elements k and p”;!
         k= p;!
         p= (k-1)/2;!
    }!
}!
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insert() 



•  Remove the least element – it is at the root 
•  This leaves a hole at the root – fill it in with the last 

element of the array 
•  If this violates heap order because the root element is 

too big, swap it down with the smaller of its children 
•  Continue swapping it down until it finds its rightful 

place 
•  The heap invariant is maintained! 
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extract() 
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extract() 
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extract() 



Time is O(log n), since the tree is balanced 
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extract() 



 /** Remove and return the smallest element !

      (return null if list is empty) */!

 public E extract() {!

     if (size() == 0) return null;!

     E temp=  get(0);         // smallest value is at root!

     set(0, get(size() – 1)); // move last element to root!

     setSize(size() - 1);     // reduce size by 1!

     bubbleDown(0);!

     return temp;!

 }!
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extract() 



/** Bubble the root down to its heap position.!
    Pre: tree is a heap except: root may be >than a child */!
private void bubbleDown() {!
!
   int k= 0;!
   // Set c to smaller of k’s children!
   int c= 2*k + 2;     // k’s right child!
   if (c > size()-1 || get(c-1).compareTo(get(c)) < 0)  c--;!
!
   // inv tree is a heap except: element k may be > than a child.!
   //        Also k’s smallest child is element c !
   while (c < size()  &&  get(k).compareTo(get(c) > 0) {!
      Swap elements at k and c;!
      k= c;!
      c= 2*k + 2;      // k’s right child!
      if (c > size()-1 || get(c-1).compareTo(get(c)) < 0)  c--;!
   }    !
}!
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HeapSort 
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Given a Comparable[] array of length n, 
•  Put all n elements into a heap – O(n log n)  
•  Repeatedly get the min            – O(n log n) 

public static void heapSort(Comparable[] b)!
{!
   PriorityQueue<Comparable> pq= !
       new PriorityQueue<Comparable>(b);!
    for (int i = 0; i < b.length; i++) { !
       b[i] = pq.extract(); !
    }!
}!

One can do the 
two stages in the 

array itself, in 
place, so 

algorithm takes 
O(1) space. 



Many uses of priority queues & heaps 

¨  Mesh compression: quadric error mesh simplification 

¨  Event-driven simulation: customers in a line 

¨  Collision detection: "next time of contact" for colliding bodies 

¨  Data compression: Huffman coding  

¨  Graph searching: Dijkstra's algorithm, Prim's algorithm  

¨  AI Path Planning: A* search  

¨  Statistics: maintain largest M values in a sequence  

¨  Operating systems: load balancing, interrupt handling  

¨  Discrete optimization: bin packing, scheduling  

¨  Spam filtering: Bayesian spam filter 
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Surface simplification [Garland and Heckbert 1997] 
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