
PRIORITY QUEUES AND
HEAPS
Lecture 16
CS2110 Fall 2014

Reminder: A4 Collision Detection

¨  Due tonight by midnight

2

Readings and Homework

Read Chapter 26 “A Heap Implementation” to learn about heaps

Exercise: Salespeople often make matrices that show all the great
features of their product that the competitor’s product lacks. Try this
for a heap versus a BST. First, try and

sell someone on a BST: List some
desirable properties of a BST
that a heap lacks. Now be the heap
salesperson: List some good things
about heaps that a BST lacks. Can
you think of situations where you
would favor one over the other?

3

With ZipUltra heaps, you’ve got it
made in the shade my friend!

The Bag Interface

A Bag:

interface Bag<E> {!
 void insert(E obj);!
 E extract(); //extract some element!
 boolean isEmpty();!
}!

Refinements of Bag: Stack, Queue, PriorityQueue

4

Like a Set except that a value can be in it more
than once. Example: a bag of coins

Stacks and Queues as Lists

•  Stack (LIFO) implemented as list
– insert(), extract() from front of list

•  Queue (FIFO) implemented as list

– insert() on back of list, extract() from front of list

•  These operations are O(1)

55 120 19 16 first

last

5

Priority Queue

•  A Bag in which data items are Comparable

•  lesser elements (as determined by compareTo()) have
higher priority

• extract() returns the element with the highest priority =
least in the compareTo() ordering

•  break ties arbitrarily

6

Scheduling jobs to run on a computer
default priority = arrival time
priority can be changed by operator

Scheduling events to be processed by an event handler
priority = time of occurrence

Airline check-in
first class, business class, coach
FIFO within each class

Examples of Priority Queues
7

java.util.PriorityQueue<E>
8

boolean add(E e) {...} //insert an element (insert)!
!
void clear() {...} //remove all elements!
!
E peek() {...} //return min element without removing!
 //(null if empty)!
!
E poll() {...} //remove min element (extract)!
 //(null if empty) !
!
int size() {...}!

Priority Queues as Lists
9

•  Maintain as unordered list
– insert() put new element at front – O(1)
– extract() must search the list – O(n)

•  Maintain as ordered list
– insert() must search the list – O(n)
– extract() get element at front – O(1)

•  In either case, O(n2) to process n elements

Can we do better?

Important Special Case
10

• Fixed number of priority levels 0,...,p – 1
• FIFO within each level
• Example: airline check-in

• insert()– insert in appropriate queue – O(1)
• extract()– must find a nonempty queue – O(p)

Heaps
11

•  A heap is a concrete data structure that can be used
to implement priority queues

•  Gives better complexity than either ordered or
unordered list implementation:
– insert(): O(log n)
– extract(): O(log n)

•  O(n log n) to process n elements
•  Do not confuse with heap memory, where the Java

virtual machine allocates space for objects – different
usage of the word heap

Heaps
12

•  Binary tree with data at each node
•  Satisfies the Heap Order Invariant:

•  Size of the heap is “fixed” at n. (But can usually double
n if heap fills up)

The least (highest priority) element of any
subtree is found at the root of that subtree.

4

14 6

21 19 8 35

22 55 38 10 20

Smallest element in any subtree
is always found at the root
of that subtree

Note: 19, 20 < 35: Smaller elements
can be deeper in the tree!

Heaps
13

Examples of Heaps
14

• Ages of people in family tree
– parent is always older than children, but you can have

an uncle who is younger than you

• Salaries of employees of a company
– bosses generally make more than subordinates, but a

VP in one subdivision may make less than a Project
Supervisor in a different subdivision

Balanced Heaps
15

These add two restrictions:

1.  Any node of depth < d – 1 has exactly 2 children,
where d is the height of the tree

–  implies that any two maximal paths (path from a root
to a leaf) are of length d or d – 1, and the tree has at
least 2d nodes

•  All maximal paths of length d are to the left of those of
length d – 1

Example of a Balanced Heap
16

d = 3

4

14 6

21 19 8 35

22 55 38 10 20

•  Elements of the heap are stored in the array in order,
going across each level from left to right, top to bottom

•  The children of the node at array index n are at indices

2n + 1 and 2n + 2

•  The parent of node n is node (n – 1)/2

Store in an ArrayList or Vector
17

0

1 2

3 4 5 6

7 8 9 10 11

children of node n are found at 2n + 1 and 2n + 2

4

14 6

21 19 8 35

22 55 38 10 20

Store in an ArrayList or Vector
18

Store in an ArrayList or Vector
19

0 1 2 3 4 5 6 7 8 9 10 11

4 6 14 21 8 19 35 22 38 55 10 20

children of node n are found at 2n + 1 and 2n + 2

0

1 2

3 4 5 6

7 8 9 10 11

4

14 6

21 19 8 35

22 55 38 10 20

•  Put the new element at the end of the array

•  If this violates heap order because it is smaller than its
parent, swap it with its parent

•  Continue swapping it up until it finds its rightful place

•  The heap invariant is maintained!

insert()
20

4

14 6

21 19 8 35

22 55 38 10 20

21

insert()

4

14 6

21 19 8 35

22 55 38 10 20 5

22

insert()

4

14 6

21

19

8 35

22 55 38 10 20

5

23

insert()

4

14

6

21

19

8 35

22 55 38 10 20

5

24

insert()

4

14

6

21

19

8 35

22 55 38 10 20

5

25

insert()

4

14

6

21

19

8 35

22 55 38 10 20

5

2

26

insert()

4

14

6

21

19

8

35 22 55 38 10 20

5

2

27

insert()

4

14

6

21

19

8

35 22 55 38 10 20

2

5

28

insert()

2

14

6

21

19

8

35 22 55 38 10 20

4

5

29

insert()

2

14

6

21

19

8

35 22 55 38 10 20

4

5

30

insert()

• Time is O(log n), since the tree is balanced

– size of tree is exponential as a function of depth

– depth of tree is logarithmic as a function of size

31

insert()

/** An instance of a priority queue */!
class PriorityQueue<E> extends java.util.Vector<E> {!
 !
 /** Insert e into the priority queue */!
 public void insert(E e) {!
 super.add(e); //add to end of array!
 bubbleUp(size() - 1); // given on next slide!
 }!
}!

32

insert()

class PriorityQueue<E> extends java.util.Vector<E> {!
 !
 /** Bubble element k up the tree */ !
 private void bubbleUp(int k) {!
!
 int p= (k-1)/2; // p is the parent of k!
!
 // inv: Every element satisfies the heap property!
 // except element k might be smaller than its parent!
 while (k>0 && get(k).compareTo(get(p)) < 0) {!
 “swap elements k and p”;!
 k= p;!
 p= (k-1)/2;!
 }!
}!

33

insert()

•  Remove the least element – it is at the root
•  This leaves a hole at the root – fill it in with the last

element of the array
•  If this violates heap order because the root element is

too big, swap it down with the smaller of its children
•  Continue swapping it down until it finds its rightful

place
•  The heap invariant is maintained!

34

extract()

4

5 6

21 14 8 35

22 55 38 10 20 19

35

extract()

5 6

21 14 8 35

22 55 38 10 20 19

4

36

extract()

5 6

21 14 8 35

22 55 38 10 20 19

4

37

extract()

5 6

21 14 8 35

22 55 38 10 20

19 4

38

extract()

5

6

21 14 8 35

22 55 38 10 20

19

4

39

extract()

5

6

21

14

8 35

22 55 38 10 20

19

4

40

extract()

5

6

21

14

8 35

22 55 38 10 20

4

19

41

extract()

6

21

14

8 35

22 55 38 10 20

4 5

19

42

extract()

6

21

14

8 35

22 55 38 10 20

19

4 5

43

extract()

6

21

14

8 35

22 55 38 10

20

19

4 5

44

extract()

6

21

14

8 35

22 55 38 10

20

19

4 5

45

extract()

6

21

14 8

35

22 55 38 10

20 19

4 5

46

extract()

6

21

14 8

35

22 55 38

10

20

19

4 5

47

extract()

6

21

14 8

35

22 55 38

10 19

20

4 5

48

extract()

Time is O(log n), since the tree is balanced

49

extract()

 /** Remove and return the smallest element !

 (return null if list is empty) */!

 public E extract() {!

 if (size() == 0) return null;!

 E temp= get(0); // smallest value is at root!

 set(0, get(size() – 1)); // move last element to root!

 setSize(size() - 1); // reduce size by 1!

 bubbleDown(0);!

 return temp;!

 }!

50

extract()

/** Bubble the root down to its heap position.!
 Pre: tree is a heap except: root may be >than a child */!
private void bubbleDown() {!
!
 int k= 0;!
 // Set c to smaller of k’s children!
 int c= 2*k + 2; // k’s right child!
 if (c > size()-1 || get(c-1).compareTo(get(c)) < 0) c--;!
!
 // inv tree is a heap except: element k may be > than a child.!
 // Also k’s smallest child is element c !
 while (c < size() && get(k).compareTo(get(c) > 0) {!
 Swap elements at k and c;!
 k= c;!
 c= 2*k + 2; // k’s right child!
 if (c > size()-1 || get(c-1).compareTo(get(c)) < 0) c--;!
 } !
}!

51

HeapSort
52

Given a Comparable[] array of length n,
•  Put all n elements into a heap – O(n log n)
•  Repeatedly get the min – O(n log n)

public static void heapSort(Comparable[] b)!
{!
 PriorityQueue<Comparable> pq= !
 new PriorityQueue<Comparable>(b);!
 for (int i = 0; i < b.length; i++) { !
 b[i] = pq.extract(); !
 }!
}!

One can do the
two stages in the

array itself, in
place, so

algorithm takes
O(1) space.

Many uses of priority queues & heaps

¨  Mesh compression: quadric error mesh simplification

¨  Event-driven simulation: customers in a line

¨  Collision detection: "next time of contact" for colliding bodies

¨  Data compression: Huffman coding

¨  Graph searching: Dijkstra's algorithm, Prim's algorithm

¨  AI Path Planning: A* search

¨  Statistics: maintain largest M values in a sequence

¨  Operating systems: load balancing, interrupt handling

¨  Discrete optimization: bin packing, scheduling

¨  Spam filtering: Bayesian spam filter

53

Surface simplification [Garland and Heckbert 1997]

54

