
9/18/14

1

CORRECTNESS ISSUES
AND LOOP INVARIANTS

Lecture 8
CS2110 – Fall 2014

About A2 and feedback. Recursion

S2 has been graded. If you got 30/30, you will probably have
no feedback.

If you got less than full credit, there should be feedback showing
you which function(s) is incorrect.

If you don’t see feedback, ask for a regrade on the CMS. Please
don’t email anyone asking for a regrade.

We will put on the course website some recursive functions for you
to write, to get practice with recursion. This will not be an
assignment. But if you know you need practice, practice!

2

Preconditions and Postconditions
3

{x >= 0}
x= x + 1;
{x > 0}

precondition Q
statement S
postcondition R

Write it like this: {Q} S {R}
Called a Hoare Triple, after Sir
Tony Hoare. Introduced notation in
a paper in 1969.

{Q} S {R} is a true-false statement. Read it as follows:
Execution of S begun in a state in which Q is true is
guaranteed to terminate, and in a state in which R is true.

This Hoare triple
is true!

In a Java program, you
have to make have to
make the assertion
comments: // {x >= 0}

Preconditions and Postconditions
4

{x >= 0}
x= x + 1;
{x = 0}

precondition Q
statement S
postcondition R

Write it like this: {Q} S {R}
Called a Hoare Triple, after Sir
Tony Hoare. Introduced notation in
a paper in 1969.

{Q} S {R} is a true-false statement. Read it as follows:
Execution of S begun in a state in which Q is true is
guaranteed to terminate, and in a state in which R is true.

This Hoare triple
is false!

In a Java program, you
have to make have to
make the assertion
comments: // {x >= 0}

Annotating more completely with assertions
5

/** Return b^c. Precondition 0 <= c */
public static int exp(int b, int c) {

 int ans;
 if (c == 0) {
 {0 = c} ans= 1; {ans = b^c} Hoare triples
 } else {
 {0 < c} ans= b * exp(b, c-1); {ans = b^c}
 }
 {ans = b^c}
 return ans;
}

The blue things are assertions –pre- and
post-conditions. They help prove that IF
0 <= c at the beginning, ans = b^c
before the return.

{0 <= c} precondition!

Axiomatic definition of a language
6

/** Return b^c. Precondition 0 <= c */
public static int exp(int b, int c) {

 int ans;
 if (c == 0) {
 {0 = c} ans= 1; {ans = b^c}
 } else {
 {0 < c}
 ans= b * exp(b, c-1);
 {ans = b^c}
 }
 {ans = b^c}
 return ans;
}

Hoare gave rules for deciding
whether a Hoare triple {Q} S
{R} was correct. Defined the
language in terms of correctness
instead of execution.

See that in later courses.
We concentrate on one aspect:
how to “prove” loops correct.

{0 <= c}

9/18/14

2

Axiomatic definition of a language
7

/** Return b^c. Precondition 0 <= c */
public static int exp(int b, int c) {

 int ans;
 if (c == 0) {
 {0 = c} ans= 1; {ans = b^c}
 } else {
 {0 < c}
 ans= b * exp(b, c-1);
 {ans = b^c}
 }
 {ans = b^c}
 return ans;
}

Hoare gave rules for deciding
whether a Hoare triple {Q} S
{R} was correct. Defined the
language in terms of correctness
instead of execution.

See that in later courses.
We concentrate on one aspect:
how to “prove” loops correct.

{0 <= c}

Reason for introducing loop invariants
8

Given c >= 0, store b^c in x
z= 1; x= b; y= c;
while (y != 0) {
 if (y is even) {
 x= x*x; y= y/2;
 } else {
 z= z*x; y= y - 1;
 }
}
{z = b^c}

Algorithm to compute b^c.

Can’t understand any piece of it
without understanding
everything.
In fact, only way to get a handle
on it is to execute it on some
test case.

Need to understand initialization without
looking at any other code.
Need to understand condition y != 0
without looking at method body
Etc.

Invariant: is true before and after each iteration
9

initialization;
// invariant P
 while (B) {S}

“invariant” means unchanging. Loop invariant: an assertion
—a true-false statement— that is true before and after each
iteration of the loop —every time B is to be evaluated.
Help us understand each part of loop without looking at all
other parts.

init B S
true

false

{P}

{P and ! B} Upon termination, we
know P true, B false

Simple example to illustrate methodology
10

Store sum of 0..n in s
Precondition: n >= 0
// { n >= 0}
k= 1; s= 0;
// inv: s = sum of 0..k-1 &&
// 0 <= k <= n+1
while (k <= n) {
 s= s + k;
 k= k + 1;
}
{s = sum of 0..n}

First loopy question.
Does it start right?
Does initialization make
invariant true?

Yes!
 s = sum of 0..k-1
= <substitute initialization>
 0 = sum of 0..1-1
= <arithmetic>
 0 = sum of 0..0

We understand initialization
without looking at any other code

Simple example to illustrate methodology
11

Store sum of 0..n in s
Precondition: n >= 0
// { n >= 0}
k= 1; s= 0;
// inv: s = sum of 0..k-1 &&
// 0 <= k <= n+1
while (k <= n) {
 s= s + k;
 k= k + 1;
}
{s = sum of 0..n}

Second loopy question.
Does it stop right?
Upon termination, is
postcondition true?

Yes!
 inv && ! k <= n
=> <look at inv>
 inv && k = n+1
=> <use inv>
 s = sum of 0..n+1-1

We understand that postcondition is true
without looking at init or repetend

Simple example to illustrate methodology
12

Store sum of 0..n in s
Precondition: n >= 0
// { n >= 0}
k= 1; s= 0;
// inv: s = sum of 0..k-1 &&
// 0 <= k <= n+1
while (k <= n) {
 s= s + k;
 k= k + 1;
}
{s = sum of 0..n}

Third loopy question.
Progress?
Does the repetend make
progress toward termination?

Yes! Each iteration
increases k, and when it gets
larger than n, the loop
terminates

We understand that there is no infinite
looping without looking at init and
focusing on ONE part of the repetend.

9/18/14

3

Simple example to illustrate methodology
13

Store sum of 0..n in s
Precondition: n >= 0
// { n >= 0}
k= 1; s= 0;
// inv: s = sum of 0..k-1 &&
// 0 <= k <= n+1
while (k <= n) {
 s= s + k;
 k= k + 1;
}
{s = sum of 0..n}

Fourth loopy question.
Invariant maintained by each
iteration?
Is this Hoare triple true?
 {inv && k <= n} repetend {inv}

Yes!

{s = sum of 0..k-1}
 s= s + k;
{s = sum of 0..k}
 k= k+1;
{s = sum of 0..k-1}

4 loopy questions to ensure loop correctness
14

{precondition Q}
init;
// invariant P
while (B) {
 S
}
{R}

First loopy question;
Does it start right?
Is {Q} init {P} true?

Second loopy question:
Does it stop right?
Does P && ! B imply R?

Third loopy question:
Does repetend make progress?
Will B eventually become false?

Fourth loopy question:
Does repetend keep invariant true?
Is {P && ! B} S {P} true?

Four loopy
questions: if
answered yes,
algorithm is
correct.

Note on ranges m..n
15

Range m..n contains n+1–m ints: m, m+1, ..., n
(Think about this as "follower (n+1) minus first (m)”)
2..4 contains 2, 3, 4: that is 4 + 1 – 2 = 3 values
2..3 contains 2, 3: that is 3 + 1 – 2 = 2 values
2..2 contains 2: that is 2 + 1 – 2 = 1 value
2..1 contains : that is 1 + 1 – 2 = 0 values
Convention: notation m..n implies that m <= n+1
Assume convention even if it is not mentioned!
If m is 1 larger than n, the range has 0 values

b

m n

array segment b[m..n]:

Can’t understand this example without invariant!
16

Given c >= 0, store b^c in z

z= 1; x= b; y= c;
// invariant y >= 0 &&
// z*x^y = b^c
while (y != 0) {
 if (y is even) {
 x= x*x; y= y/2;
 } else {
 z= z*x; y= y - 1;
 }
}
{z = b^c}

First loopy question.
Does it start right?
Does initialization make
invariant true?

Yes!
 z*x^y
= <substitute initialization>
 1*b^c
= <arithmetic>
 b^c

We understand initialization
without looking at any other code

For loopy questions to reason about invariant
17

Given c >= 0, store b^c in x

z= 1; x= b; y= c;

while (y != 0) {
 if (y is even) {
 x= x*x; y= y/2;
 } else {
 z= z*x; y= y - 1;
 }
}
{z = b^c}

Second loopy question.
Does it stop right?
When loop terminates,
is z = b^c?

Yes! Take the invariant, which is
true, and use fact that y = 0:
 z*x^y = b^c
= <y = 0>
 z*x^0 = b^c
= <arithmetic>
 z = b^c

We understand loop condition
without looking at any other code

// invariant y >= 0 AND
// z*x^y = b^c

For loopy questions to reason about invariant
18

Given c >= 0, store b^c in x

z= 1; x= b; y= c;
// invariant y >= 0 AND
// z*x^y = b^c
while (y != 0) {
 if (y is even) {
 x= x*x; y= y/2;
 } else {
 z= z*x; y= y - 1;
 }
}
{z = b^c}

Third loopy question.
Does repetend make progress
toward termination?

Yes! We know that y > 0 when
loop body is executed. The loop
body decreases y.

We understand progress without
looking at initialization

9/18/14

4

For loopy questions to reason about invariant
19

Given c >= 0, store b^c in x

z= 1; x= b; y= c;
// invariant y >= 0 AND
// z*x^y = b^c
while (y != 0) {
 if (y is even) {
 x= x*x; y= y/2;
 } else {
 z= z*x; y= y - 1;
 }
}
{z = b^c}

Fourth loopy question.
Does repetend keep invariant
true?

Yes! Because of properties:

•  For y even, x^y = (x*x)^(y/2)
•  z*x^y = z*x*x^(y-1)

We understand invariance without
looking at initialization

Designing while-loops or for-loops
20

Many loops process elements of an array b (or a String, or any
list) in order: b[0], b[1], b[2], …
If the postcondition is
 R: b[0..b.length-1] has been processed
Then in the beginning, nothing has been processed, i.e.
 b[0..-1] has been processed
After k iterations, k elements have been processed:
 P: b[0..k-1] has been processed

invariant P: b processed not processed

0 k b.length

Developing while-loops (or for loops)
21

 Task: Process b[0..b.length-1]

 {R: b[0..b.length-1] has been processed}

Replace b.length in postcondition
by fresh variable k to get invariant
 b[0..k-1] has been processed

inv P: b processed not processed

0 k b.length

or draw it as a picture

k= 0;
{inv P}
while () {

}

k != b.length

k= k + 1; // progress toward termination
Process b[k]; // maintain invariant

Developing while-loops (or for loops)
22

 Task: Process b[0..b.length-1]

 {R: b[0..b.length-1] has been processed}

inv P: b processed not processed

0 k b.length

k= 0;
{inv P}
while () {

}

k != b.length

k= k + 1; // progress toward termination
Process b[k]; // maintain invariant

Most loops that process the
elements of an array in order
will have this loop invariant

and will look like this.

Counting the number of zeros in b.
Start with last program and refine it for this task

23

 Task: Set s to the number of 0’s in b[0..b.length-1]

 {R: s = number of 0’s in b[0..b.length-1]}

inv P: b s = # 0’s here not processed

0 k b.length

k= 0;
{inv P}
while () {

}

k != b.length

k= k + 1; // progress toward termination
Process b[k]; // maintain invariant

s= 0;

if (b[k] == 0) s= s + 1;

Be careful. Invariant may require processing
elements in reverse order!

24

inv P: b processed not processed

0 k b.length
This invariant forces processing from beginning to end

inv P: b not processed processed

0 k b.length
This invariant forces processing from end to beginning

9/18/14

5

Process elements from end to beginning
25

inv P: b not processed processed

0 k b.length

{R: b[0..b.length-1] is processed}

k= b.length–1; // how does it start?

while (k >= 0) { // how does it end?

}

k= k – 1; // how does it make progress?

Process b[k]; // how does it maintain invariant?

Process elements from end to beginning
26

inv P: b not processed processed

0 k b.length

{R: b[0..b.length-1] is processed}

k= b.length–1;

while (k >= 0) {

} k= k – 1;

Process b[k];

Heads up! It is important that you can look
at an invariant and decide whether elements
are processed from beginning to end or end
to beginning!

For some reason, some students have
difficulty with this. A question like this
could be on the prelim!

Develop binary search for v in sorted array b

27

 ? pre: b
0 b.length

post: b
0 h b.length
 <= v > v

 2 2 4 4 4 4 7 9 9 9 9 pre: b
0 4 5 6 7 b.length

Example:

If v is 4, 5, or 6, h is 5 If v is 7 or 8, h is 6

If v in b, h is index of rightmost occurrence of v.
If v not in b, h is index before where it belongs.

Develop binary search in sorted array b for v

28

 ? pre: b
0 b.length

post: b
0 h b.length
 <= v > v

Get loop invariant by combining pre- and post-
conditions, adding variable t to mark the other boundary

inv: b
0 h t b.length
 <= v ? > v

Store a value in h to make this true:

How does it start (what makes the invariant true)?

29

 ? pre: b
0 b.length

inv: b
0 h t b.length
 <= v ? > v

Make first and last partitions empty:

 h= -1; t= b.length;

When does it end (when does invariant look like postcondition)?

30

inv: b
0 h t b.length
 <= v ? > v

h= -1; t= b.length;
while () {

}

post: b
0 h b.length
 <= v > v

Stop when ? section
is empty. That is when
h = t-1.
Therefore, continue as
long as h != t-1.

h != t-1

9/18/14

6

How does body make progress toward termination (cut ? in half)
and keep invariant true?

31

inv: b
0 h t b.length
 <= v ? > v

h= -1; t= b.length;
while (h != t-1) {

}

Let e be index of middle
value of ? Section.
Maybe we can set h or t to
e, cutting ? section in half

b
0 h e t b.length
 <= v ? > v

int e= (h+t)/2;

How does body make progress toward termination (cut ? in half)
and keep invariant true?

32

inv: b
0 h t b.length
 <= v ? > v

h= -1; t= b.length;
while (h != t-1) {
 int e= (h+t)/2;

}

b
0 h e t b.length
 <= v ? ? > v

if (b[e] <= v) h= e;

If b[e] <= v, then so is every value
to its left, since the array is sorted.
Therefore, h= e; keeps the invariant
true.

b
0 h e t b.length
 <= v <= v ? > v

How does body make progress toward termination (cut ? in half)
and keep invariant true?

33

inv: b
0 h t b.length
 <= v ? > v

h= -1; t= b.length;
while (h != t-1) {
 int e= (h+t)/2;
 if (b[e] <= v) h= e;

}

b
0 h e t b.length
 <= v ? ? > v

else t= e;

If b[e] > v, then so is every value to
its right, since the array is sorted.
Therefore, t= e; keeps the invariant
true.

b
0 h e t b.length
 <= v ? > v > v

