

About A2 and feedback. Recursion

S2 has been graded. If you got $30 / 30$, you will probably have no feedback.
If you got less than full credit, there should be feedback showing you which function(s) is incorrect.
If you don't see feedback, ask for a regrade on the CMS. Please don't email anyone asking for a regrade.

We will put on the course website some recursive functions for you to write, to get practice with recursion. This will not be an assignment. But if you know you need practice, practice!

Invariant: is true before and after each iteration

Simple example to illustrate methodology

```Store sum of 0..n in s Precondition: \(\mathrm{n}>=0\) // \(\{\mathrm{n}>=0\}\) \(\mathrm{k}=1 ; \mathrm{s}=0\); // inv: \(\mathrm{s}=\) sum of \(0 . . \mathrm{k}-1 \& \&\) // \(\quad 0<=\mathrm{k}<=\mathrm{n}+1\) while \((\mathrm{k}<=\mathrm{n})\) \{ \(\mathrm{s}=\mathrm{s}+\mathrm{k}\); \(\mathrm{k}=\mathrm{k}+1\); \} \{s = sum of 0..n \(\}\)```	Second loopy question.   Does it stop right?   Upon termination, is postcondition true? ```Yes! inv && ! k<= n => <look at inv> inv && k=n+1 => <use inv> s= sum of 0..n+1-1```
$\square$ We understand that postcondition is true without looking at init or repetend	


	Reason for introducing loop invariants	
8		
	```Given \(\mathrm{c}>=0\), store \(\mathrm{b}^{\wedge} \mathrm{c}\) in x \(\mathrm{z}=1 ; \mathrm{x}=\mathrm{b} ; \mathrm{y}=\mathrm{c}\); while (y \(!=0)\{\) if ( y is even) \(\{\) \(x=x * x ; y=y / 2\); \} else \{ \(z=z^{*} x ; y=y-1 ;\) \} \(\} \quad\left\{\mathrm{z}=\mathrm{b}^{\wedge} \mathrm{c}\right\} \quad\) Need to und looking at an Need to und without look Etc.```	Algorithm to compute $\mathrm{b}^{\wedge} \mathrm{c}$.   Can't understand any piece of it without understanding everything.   In fact, only way to get a handle on it is to execute it on some test case.   stand initialization without other code.   stand condition y $!=0$   ng at method body

Simple example to illustrate methodology

Simple example to illustrate methodology

| Simple example to illustrate methodology |
| :--- | :--- |

Note on ranges m..n

Range $\mathrm{m} . \mathrm{n}$ contains $\mathrm{n}+1-\mathrm{m}$ ints: $\mathrm{m}, \mathrm{m}+1, \ldots, \mathrm{n}$ (Think about this as "follower ($\mathrm{n}+1$) minus first (m)")
$2 . .4$ contains 2, 3, 4: that is $4+1-2=3$ values
$2 . .3$ contains 2, 3 : that is $3+1-2=2$ values
2..2 contains 2: that is $2+1-2=1$ value
2..1 contains: that is $1+1-2=0$ values

Convention: notation $\mathrm{m} . \mathrm{n}$ implies that $\mathrm{m}<=\mathrm{n}+1$
Assume convention even if it is not mentioned!
If m is 1 larger than n, the range has 0 values
array segment $\mathrm{b}[\mathrm{m} . \mathrm{n}]$:

4 loopy questions to ensure loop correctness

\{precondition Q$\}$
init;
// invariant P
while (B) $\{$
$\quad \mathrm{S}$
$\}$
$\{\mathrm{R}\}$

First loopy question;
Does it start right?
Is $\{\mathrm{Q}\}$ init $\{\mathrm{P}\} \quad$ true?
Second loopy question:
Does it stop right?
Does P \&\&! B imply R?
Third loopy question:
Does repetend make progress?
Will B eventually become false?
Fourth loopy question:
Does repetend keep invariant true?
Is $\{P \& \&!B\} S\{P\}$ true?

Can't understand this example without invariant!

```Given \(\mathrm{c}>=0\), store \(\mathrm{b}^{\wedge} \mathrm{c}\) in z \(\mathrm{z}=1 ; \mathrm{x}=\mathrm{b} ; \mathrm{y}=\mathrm{c}\); \(/ /\) invariant \(y>=0 \& \&\) // \(\quad z^{*} x^{\wedge} y=b^{\wedge} c\) while \((\mathrm{y}!=0)\{\) if ( y is even) \{ \(x=x * x ; y=y / 2\); \} else \{ \(z=z^{*} x ; y=y-1 ;\)```	First loopy question.   Does it start right?   Does initialization make invariant true?   Yes! $\begin{aligned} & \begin{array}{r} \mathrm{z}^{*} \mathrm{x}^{\wedge} \mathrm{y} \\ <\text { substitute initialization }> \\ 1 * \mathrm{~b}^{\wedge} \mathrm{c} \end{array} \\ &=\begin{array}{l} \quad \text { arithmetic }> \\ \mathrm{b}^{\wedge} \mathrm{c} \end{array} \end{aligned}$
\} $\left\{\mathrm{z}=\mathrm{b}^{\wedge} \mathrm{c}\right\}$	derstand initialization ut looking at any other code

For loopy questions to reason about invariant

Given $\mathrm{c}>=0$, store $\mathrm{b}^{\wedge} \mathrm{c}$ in x ```\(\mathrm{z}=1 ; \mathrm{x}=\mathrm{b} ; \mathrm{y}=\mathrm{c}\); // invariant \(y>=0\) AND // \(\quad z^{*} x^{\wedge} y=b^{\wedge} c\) while \((\mathrm{y}!=0)\) \{ if ( y is even) \{ \(x=x * x ; y=y / 2\); \} else \{ \(\mathrm{z}=\mathrm{z}^{*} \mathrm{x} ; \mathrm{y}=\mathrm{y}-1 ;\) \}```	Second loopy question. Does it stop right?   When loop terminates, $\text { is } \mathrm{z}=\mathrm{b}^{\wedge} \mathrm{c} \text { ? }$   Yes! Take the invariant, which is true, and use fact that $\mathrm{y}=0$ : $=\begin{aligned} & z^{*} x^{\wedge} y=b^{\wedge} c \\ & <y=0> \\ & z^{*} x^{\wedge} 0=b^{\wedge} c \\ & =\begin{array}{c} <\text { arithmetic }> \\ z=b^{\wedge} c \end{array}, ~ \end{aligned}$
$\begin{array}{ll} \} & \text { We understa } \\ \{\mathrm{z}=\mathrm{b} \wedge \mathrm{c}\} & \text { without lool } \end{array}$	We understand loop condition without looking at any other code

For loopy questions to reason about invariant

Given $\mathrm{c}>=0$, store $\mathrm{b}^{\wedge} \mathrm{c}$ in x	Third loopy question.   Does repetend make progress toward termination?   Yes! We know that $\mathrm{y}>0$ when loop body is executed. The loop body decreases y.   erstand progress without at initialization
$\left\{\mathrm{z}=\mathrm{b}^{\wedge} \mathrm{c}\right\}$	


For loopy questions to reason about invariant	
19	
```Given \(\mathrm{c}>=0\), store \(\mathrm{b}^{\wedge} \mathrm{c}\) in x \(\mathrm{z}=1 ; \mathrm{x}=\mathrm{b} ; \mathrm{y}=\mathrm{c}\); // invariant \(\mathrm{y}>=0\) AND // \(\quad z^{*} x^{\wedge} y=b^{\wedge} c\) while (y \(=0)\) \{ if ( y is even) \{ \(x=x^{*} x ; y=y / 2\); \} else \{ \(\mathrm{z}=\mathrm{z} * \mathrm{x} ; \mathrm{y}=\mathrm{y}-1\); \} \} We und \(\left\{\mathrm{z}=\mathrm{b}^{\wedge} \mathrm{c}\right\}\) looking```	Fourth loopy question.   Does repetend keep invariant true?   Yes! Because of properties:   - For $y$ even, $x^{\wedge} y=\left(x^{*} x\right)^{\wedge}(y / 2)$   - $z^{*} x^{\wedge} y=z^{*} x^{*} x^{\wedge}(y-1)$   rstand invariance without at initialization


Counting the number of zeros in b.
 Start with last program and refine it for this task

Task: Set s to the number of 0 's in b [0..b.length- 1]
$\mathrm{k}=0 ; \mathrm{s}=0$;
\{inv P\}
while (k ! $=$ b.length) \{
if $(\mathrm{b}[\mathrm{k}]=0) \mathrm{s}=\mathrm{s}+1$;
$\mathrm{k}=\mathrm{k}+1$; // progress toward termination
\}
$\{\mathrm{R}: \mathrm{s}=$ number of 0 's in $\mathrm{b}[0 . . \mathrm{b}$. length-1] $\}$

	l inv $\mathrm{P}:$ $\mathrm{s}=\#$ 0's here	not processed	

Designing while-loops or for-loops

Many loops process elements of an array b (or a String, or any list) in order: $\mathrm{b}[0], \mathrm{b}[1], \mathrm{b}[2], \ldots$
If the postcondition is
R : $\mathrm{b}[0 . . \mathrm{b}$. length -1$]$ has been processed
Then in the beginning, nothing has been processed, i.e.
$\mathrm{b}[0 . .-1]$ has been processed
After k iterations, k elements have been processed:
P : $\mathrm{b}[0 . . \mathrm{k}-1]$ has been processed

0	k
processed	not processed

\{R: b[0..b.length-1] has been processed \}
$\operatorname{inv} \mathrm{P}: ~ b$

Be careful. Invariant may require processing elements in reverse order!

This invariant forces processing from beginning to end

0			b.length
inv P: b	processed	not processed	

This invariant forces processing from end to beginning

	0	k		b.length
inv P:	b	not processed		
	processed			

How does it start (what makes the invariant true)?
pre: b \qquad b.length
nv:

Make first and last partitions empty:

$$
\mathrm{h}=-1 ; \mathrm{t}=\mathrm{b} . \text { length; }
$$

Develop binary search in sorted array b for v
pre: b \qquad b.length

Store a value in h to make this true:

post: b | 0 | h | |
| :--- | :--- | :--- |
| | $<=\mathrm{v}$ | $>\mathrm{v}$ |
| | | |

Get loop invariant by combining pre- and postconditions, adding variable t to mark the other boundary
inv:

When does it end (when does invariant look like postcondition)?
post:

b.length

$\mathrm{h}=-1 ; \mathrm{t}=\mathrm{b}$. length;	Stop when ? section
while $(\mathrm{h}!=\mathrm{t}-1)\{$	is empty. That is when
	$\mathrm{h}=\mathrm{t}-1$.

How does body make progress toward termination (cut ? in half) and keep invariant true?

 and keep invariant true?

