
RECURSION
Lecture 7

CS2110 – Fall 2014

Overview references to sections in text
2

¨  Note: We’ve covered everything in JavaSummary.pptx!
¨  What is recursion? 7.1-7.39 slide 1-7

¨  Base case 7.1-7.10 slide 13

¨  How Java stack frames work 7.8-7.10 slide 28-32

A little about generics –used in A3
3

public class DLinkedList<E> { …} // E is a type parameter

/** Values in d1 can be ANY objects —String, JFrame, etc. */
DLinkedList d1= new DLinkedList();
…
String x= ((String) d1.getHead()).getValueOf(); // cast is needed

/** The values in d2 are only objects of class String */
DLinkedList<String> d2= new DLinkedList<String>();
…
String s= d2.getHead().getValueOf(); // no cast is needed

What does generic mean?
4

From Merriam-Webster online:

ge·ner·ic adjective

a : relating or applied to or descriptive of all members of a
genus, species, class, or group : common to or characteristic of a
whole group or class : typifying or subsuming : not specific or
individual

generic applies to that which characterizes every individual in a
category or group and may suggest further that what is
designated may be thought of as a clear and certain classificatory
criterion

Sum the digits in a non-negative integer

5

E.g. sum(7) = 7

 /** return sum of digits in n.
 * Precondition: n >= 0 */
 public static int sum(int n) {
 if (n < 10) return n;

 // { n has at least two digits }
 // return first digit + sum of rest
 return sum(n/10) + n%10 ;
 }

sum calls itself!

E.g. sum(8703) = sum(870) + 3;

Two issues with recursion

6

1. Why does it work? How does it execute?

 /** return sum of digits in n.
 * Precondition: n >= 0 */
 public static int sum(int n) {
 if (n < 10) return n;

 // { n has at least two digits }
 // return first digit + sum of rest
 return sum(n/10) + n%10 + ;
 }

sum calls itself!

2. How do we understand a given recursive method, or how do
we write/develop a recursive method?

Stacks and Queues

7

top element
2nd element

...
bottom
element

stack grows Stack: list with (at least) two basic ops:
 * Push an element onto its top
 * Pop (remove) top element

Last-In-First-Out (LIFO)

Like a stack of trays in a cafeteria

first second … last Queue: list with (at least) two basic ops:
 * Append an element
 * Remove first element
First-In-First-Out (FIFO)

Americans wait in a
line, the Brits wait in a
queue !

local variables

parameters

return info

Stack Frame
8

a frame

A “frame” contains information
about a method call:

At runtime, Java maintains a
stack that contains frames
for all method calls that are being
executed but have not completed.

Method call: push a frame for call on stack, assign argument
values to parameters, execute method body. Use the frame for
the call to reference local variables, parameters.

End of method call: pop its frame from the stack; if it is a
function, leave the return value on top of stack.

Example: Sum the digits in a non-negative integer

9

public static int sum(int n) {
 if (n < 10) return n;
 return sum(n/10) + n%10;
}

public static void main(…) {
 int r= sum(824);
 System.out.println(r);
}

frame:
n ___
return info

frame:
r ___ args ___
return info

frame:
 ?
return info Frame for method in the system

that calls method main

Example: Sum the digits in a non-negative integer

10

public static int sum(int n) {
 if (n < 10) return n;
 return sum(n/10) + n%10);
}

public static void main(…) {
 int r= sum(824);
 System.out.println(r);
}

 ?
return info

Frame for method in the system
that calls method main: main is
then called

system

r ___ args ___
return info

main

Example: Sum the digits in a non-negative integer

11

public static int sum(int n) {
 if (n < 10) return n;
 return sum(n/10) + n%10 ;
}

public static void main(…) {
 int r= sum(824);
 System.out.println(r);
}

 ?
return info

Method main calls sum:
system

r ___ args ___
return info

main

n ___
return info

824

Example: Sum the digits in a non-negative integer

12

public static int sum(int n) {
 if (n < 10) return n;
 return sum(n/10) + n%10;
}

public static void main(…) {
 int r= sum(824);
 System.out.println(r);
}

 ?
return info

n >= 10, sum calls sum:
system

r ___ args ___
return info

main

n ___
return info

824

n ___
return info

82

Example: Sum the digits in a non-negative integer

13

public static int sum(int n) {
 if (n < 10) return n;
 return sum(n/10) + n%10;
}

public static void main(…) {
 int r= sum(824);
 System.out.println(r);
}

 ?
return info

n >= 10. sum calls sum:
system

r ___ args ___
return info

main

n ___
return info

824

n ___
return info

82

n ___
return info

8

10

Example: Sum the digits in a non-negative integer

14

public static int sum(int n) {
 if (n < 10) return n;
 return sum(n/10) + n%10;
}

public static void main(…) {
 int r= sum(824);
 System.out.println(r);
}

 ?
return info

n < 10, sum stops: frame is
popped and n is put on stack: system

r ___ args ___
return info

main

n ___
return info

824

n ___
return info

82

n ___
return info

8
8

Example: Sum the digits in a non-negative integer

15

public static int sum(int n) {
 if (n < 10) return n;
 return sum(n/10) + n%10;
}

public static void main(…) {
 int r= sum(824);
 System.out.println(r);
}

 ?
return info

Using return value 8, stack computes
 8 + 2 = 10, pops frame from stack,
puts return value 10 on stack

r ___ args ___
return info

main

n ___
return info

824

n ___
return info

82
8

10

Example: Sum the digits in a non-negative integer

16

public static int sum(int n) {
 if (n < 10) return n;
 return sum(n/10) + n%10;
}

public static void main(…) {
 int r= sum(824);
 System.out.println(r);
}

 ?
return info

Using return value 10, stack computes
 10 + 4 = 14, pops frame from stack,
puts return value 14 on stack

r ___ args ___
return info

main

n ___
return info

824

10

14

Example: Sum the digits in a non-negative integer

17

public static int sum(int n) {
 if (n < 10) return n;
 return sum(n/10) + n%10;
}

public static void main(…) {
 int r= sum(824);
 System.out.println(r);
}

 ?
return info

Using return value 14, main stores
 14 in r and removes 14 from stack

r ___ args __
return info

main

14
14

Summary of method call execution
18

Memorize this!

¨  1. A frame for a call contains parameters, local variables, and
other information needed to properly execute a method call.

¨  2. To execute a method call: push a frame for the call on the
stack, assign arg values to pars, and execute method body.

When executing method body, look in frame for call for
parameters and local variables.

When method body finishes, pop frame from stack and (for a
function) push the return value on the stack.

¨  For function call: When control given back to call, it pops the
return value and uses it as the value of the function call.

Questions about local variables
19

public static void m(…) {
 …
 while (…) {
 int d= 5;
 …
 }
}

In a call m(),
when is local variable d created and when is it destroyed?
Which version of procedure m do you like better? Why?

public static void m(…) {
 int d;
 …
 while (…) {
 d= 5;
 …
 }
}

Recursion is used extensively in math
20

Math definition of n factorial E.g. 3! = 3*2*1 = 6
 0! = 1
 n! = n * (n-1)! for n > 0

Math definition of b c for c >= 0
 b0 = 1
 bc = b * bc-1 for c > 0

Easy to make math definition
into a Java function!

public static int fact(int n) {
 if (n == 0) return 1;

 return n * fact(n-1);
}

Lots of things defined recursively:
expression, grammars, trees, ….
We will see such things later

Two views of recursive methods
21

¨  How are calls on recursive methods executed?
We saw that. Use this only to gain
understanding / assurance that recursion works

¨  How do we understand a recursive method —
know that it satisfies its specification? How do
we write a recursive method?
This requires a totally different approach.
Thinking about how the method gets executed
will confuse you completely! We now introduce
this approach.

Understanding a recursive method
22

Step 1. Have a precise spec!

/** = sum of digits of n.
 * Precondition: n >= 0 */
public static int sum(int n) {
 if (n < 10) return n;

 // n has at least two digits
 return sum(n/10) + n%10 ;
}

Step 2. Check that the method works in the base case(s): Cases
where the parameter is small enough that the result can be
computed simply and without recursive calls.

If n < 10, then n consists of
a single digit. Looking at the
spec, we see that that digit is
the required sum.

Step 3. Look at the recursive
case(s). In your mind, replace
each recursive call by what it
does according to the method spec and verify that the correct result
is then obtained.
 return sum(n/10) + n%10;

Understanding a recursive method
23

Step 1. Have a precise spec!
/** = sum of digits of n.
 * Precondition: n >= 0 */
public static int sum(int n) {
 if (n < 10) return n;

 // n has at least two digits
 return sum(n/10) + n%10 ;
}

Step 2. Check that the method
works in the base case(s).

 return (sum of digits of n/10) + n%10; // e.g. n = 843

Step 3. Look at the recursive
case(s). In your mind, replace
each recursive call by what it
does acc. to the spec and verify correctness.

Understanding a recursive method
24

Step 1. Have a precise spec!
/** = sum of digits of n.
 * Precondition: n >= 0 */
public static int sum(int n) {
 if (n < 10) return n;

 // n has at least two digits
 return sum(n/10) + n%10 ;
}

Step 2. Check that the method
works in the base case(s).

Step 4. (No infinite recursion) Make sure that the args of recursive
calls are in some sense smaller than the pars of the method.

 n/10 < n

Step 3. Look at the recursive
case(s). In your mind, replace
each recursive call by what it
does according to the spec and
verify correctness.

Understanding a recursive method
25

Step 1. Have a precise spec!

Step 2. Check that the method
works in the base case(s).

Step 4. (No infinite recursion) Make sure that the args of recursive
calls are in some sense smaller than the pars of the method

Important! Can’t do step 3 without it

Once you get the hang of it, this
is what makes recursion easy!
This way of thinking is based on
math induction, which we will
see later in the course.

Step 3. Look at all other cases. See how to define these cases
in terms of smaller problems of the same kind. Then
implement those definitions, using recursive calls for those
smaller problems of the same kind. Done suitably, point 4 is
automatically satisfied.

Writing a recursive method
26

Step 1. Have a precise spec!

Step 2. Write the base case(s): Cases in which no recursive calls
are needed Generally, for “small” values of the parameters.

Step 4. (No infinite recursion) Make sure that the args of recursive
calls are in some sense smaller than the pars of the method

Step 3. Look at all other cases. See how to define these cases
in terms of smaller problems of the same kind. Then
implement those definitions, using recursive calls for those
smaller problems of the same kind.

Examples of writing recursive functions
27

Step 1. Have a precise spec!

Step 2. Write the base case(s).

For the rest of the class, we demo writing recursive functions
using the approach outlined below. The java file we develop
will be placed on the course webpage some time after the
lecture.

The Fibonacci Function
28

Mathematical definition:
 fib(0) = 0
 fib(1) = 1
 fib(n) = fib(n - 1) + fib(n - 2), n ≥ 2

Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13,
…

/** = fibonacci(n). Pre: n >= 0 */
static int fib(int n) {
 if (n <= 1) return n;
 // { 1 < n }
 return fib(n-2) + fib(n-1);
}

two base cases!

Fibonacci (Leonardo
Pisano) 1170-1240?

Statue in Pisa, Italy
Giovanni Paganucci

1863

Example: Is a string a palindrome?
29

isPal(“racecar”) returns true
isPal(“pumpkin”) returns false

/** = "s is a palindrome" */
public static boolean isPal(String s) {
 if (s.length() <= 1)
 return true;

 // { s has at least 2 chars }
 int n= s.length()-1;
 return s.charAt(0) == s.charAt(n) && isPal(s.substring(1, n));
}

Substring from
s[1] to s[n-1]

Example: Count the e’s in a string
30

¨  countEm(‘e’, “it is easy to see that this has many e’s”) = 4
¨  countEm(‘e’, “Mississippi”) = 0

 /** = number of times c occurs in s */
 public static int countEm(char c, String s) {
 if (s.length() == 0) return 0;

 // { s has at least 1 character }
 if (s.charAt(0) != c)
 return countEm(c, s.substring(1));

 // { first character of s is c}
 return 1 + countEm (c, s.substring(1));
}

substring s[1..],
i.e. s[1], …,
s(s.length()-1)

Computing an for n >= 0
31

Power computation:
¤  a0 = 1
¤  If n != 0, an = a * an-1
¤  If n != 0 and even, an = (a*a)n/2

Java note: For ints x and y, x/y is the integer part of the
quotient

Judicious use of the third property gives a logarithmic algorithm,
as we will see

Example: 38 = (3*3) * (3*3) * (3*3) * (3*3) = (3*3) 4

Computing an for n >= 0
32

/** = a**n. Precondition: n >= 0 */
static int power(int a, int n) {
 if (n == 0) return 1;
 if (n%2 == 0) return power(a*a, n/2);
 return a * power(a, n-1);
}

Power computation:
¤  a0 = 1
¤  If n != 0, an = a * an-1
¤  If n != 0 and even, an = (a*a)n/2

Conclusion
33

Recursion is a convenient and powerful way to define
functions

Problems that seem insurmountable can often be solved in a
“divide-and-conquer” fashion:

¤  Reduce a big problem to smaller problems of the same
kind, solve the smaller problems

¤  Recombine the solutions to smaller problems to form
solution for big problem

Extra material: memoization
34

/** = fibonacci(n), for n >= 0 */
static int fib(int n) {
 if (n <= 1) return n;
 // { 1 < n }
 return fib(n-2) + fib(n-1);
}

fib(4)

fib(2)

fib(0) fib(1)

fib(3)

fib(0) fib(1)

fib(1) fib(2)

Execution of fib(4)
is inefficient. E.g. in
the tree to right, you
see 3 calls of fib(1).

To speed it up, save
values of fib(i) in a
table as they are
calculated. For each i,
fib(i) called only once.
The table is called a
cache

Memoization (fancy term for “caching”)
35

Memoization: an optimization technique used to speed up
execution by having function calls avoid repeating the calculation
of results for previously processed inputs.

¤  The first time the function is called, save result
¤  The next time, look the result up

n Assumes a “side effect free” function: The function just
computes the result, it doesn’t change things

n  If the function depends on anything that changes, must
“empty” the saved results list

Adding memoization to our solution

Before memoization:

36

static int fib(int n) {
 int v= n <= 1 ? n : fib(n-1) + fib(n-2);
 return v;
}

/** For 0 <= k < cached.size(), cached[k] = fib(k) */
static ArrayList<Integer> cached= new ArrayList<Integer>();

The list used to memoize

/** For 0 <= k < cached.size(), cached[k] = fib(k) */
static ArrayList<Integer> cached= new ArrayList<Integer>();

static int fib(int n) {
 if (n < cached.size()) return cached.get(n);

 int v= n <= 1 ? n : fib(n-1) + fib(n-2);

 if (n == cached.size())
 cached.add(v);
 return v;
}

After memoization

This works because of
definition of cached

37

Appends v to cached,
keeping cached’s
definition true

/** For 0 <= k < cached.size(), cached[k] = fib(k) */
static ArrayList<Integer> cached= new ArrayList<Integer>();

static int fib(int n) {
 if (n < cached.size()) return cached.get(n);
 int v= n <= 1 ? n : fib(n-1) + fib(n-2);
 if (n == cached.size()) cached.add(v);
 return v;
}

Memoization uses a static field
38

Recursive functions should NOT use static fields. It just doesn’t
work. Don’t try to write recursive functions that way.
The one case that it works is suitably written memoization.

