
9/10/14	

1	

CS/ENGRD 2110
FALL 2014
Lecture 6: Consequence of type, casting; function equals
http://courses.cs.cornell.edu/cs2110

1

About prelim 1

2

¨  October 2: 5:30PM and at 7:30PM. We will tell you which to attend.
¨  Problems with that one? You go to the other one.

¨  Students with conflicts --having two prelims at 7:30 at that evening
 Take ours at 5:30 OR (take ours at 7:30 AND take makeup that the
other class)

 New to Cornell? It is standard practice to take 2 prelims one evening

¨  People who HAVE to be out of town should email us the particulars --later,
not now.

¨  Anyone who misses the prelim will have their grade based on prelim 2 and
the final. They will HAVE to take the final (may be optional, in a way to be
explained in November).

¨  Please don't email us about prelim 1 now. Too early. Too much going on
now for us to handle it. We’ll let you know when.

Assignment A3: Doubly linked Lists

3

Idea: maintain a list (2, 5, 7) like this:

3

h a1 2
a1

a6

v

succ

5
a6

a8

v

succ

7
a8

null

v

succ

Also, if we have a variable that contains a pointer to a
node, it’s easy to remove that node or insert another
value before or after that node.

n a6
Easy to insert a node in the beginning!

Overview ref in text and JavaSummary.pptx
4

¨  Quick look at arrays slide 50-55
¨  Casting among classes C.33-C.36 (not good) slide 34-41

¨  Consequences of the class type slide 34-41

¨  Operator instanceof slide 40

¨  Function equals slide 37-41

Homework. Learn about while/ for loops in Java. Look in text.

while (<bool expr>) { … } // syntax

for (int k= 0; k < 200; k= k+1) { … } // example

Classes we work with today
5

Work with a class Animal and subclasses
like Cat and Dog
Put components common to animals in Animal
Object partition is there but not shown

a0	

Animal	

Cat	
Cat(String, int)���
getNoise() toString()���
getWeight()	

age���
Animal(String, int)���
isOlder(Animal)	

5
a1	

Animal	

Dog	
Dog(String, int)���
getNoise() toString()	

age���
Animal(String, int)���
isOlder(Animal)	

6

Object	

Animal	

Dog	
 Cat	

class hierarchy:	
 Animal[] v= new Animal[3];
6

declaration of
array v

v	
 null	
Create array
of 3 elements

a6	

Animal[]	

0
1
2

null
null
null

Assign value of
new-exp to v

a6	

Assign and refer to elements as usual:

v[0]= new Animal(…);
…
a= v[0].getAge();

null null null	

 0 1 2	

v	

Sometimes use horizontal
picture of an array:

9/10/14	

2	

Which function is called by	

 v[0].toString() ?	

Remember, partition Object ���
contains toString()	

Which function is called?
7

a0 null a1	
v	

 0 1 2	

a0	

Animal	

Cat	
Cat(String, int)���
getNoise() toString()���
getWeight()	

age���
Animal(String, int)���
isOlder(Animal)	

5
a1	

Animal	

Dog	
Dog(String, int)���
getNoise() toString()	

age���
Animal(String, int)���
isOlder(Animal)	

6
Bottom-up or
overriding rule
says function
toString in Cat
partition

The type of v is Animal[] 	

The type of each v[k] is Animal	

The type is part of the syntax/grammar of
the language. Known at compile time.	

Consequences of a class type
8

a0 null a1	
v	

 0 1 2	

Animal[] v; declaration of v. Also means that each
 variable v[k] is of type Animal

Animal variables

As we see on next slide, the type of a class variable
like v[k] determines what methods can be called

From an Animal variable, can use only
methods available in class Animal

9

a0	

Animal	

Cat	
Cat(String, int)���
getNoise() toString()���
getWeight()	

age���
Animal(String, int)���
isOlder(Animal)	

5

a0 	
c	

 Cat

a0	

Animal	

Cat	
Cat(String, int)���
getNoise() toString()���
getWeight()	

age���
Animal(String, int)���
isOlder(Animal)	

5

a0 	
a	

 Animal

The same object a0, from the
viewpoint of a Cat variable

and an Animal variable

c.getWeight() is legal a.getWeight() is illegal

because
getWeight
Is not
available
in class
Animal

Rule for determining legality of method call
10

a0 	
c	

 C

a0	

Object	

C	

m(…) must be
declared in one
of these classes	

Rule: c.m(…) is legal and the program will compile
ONLY if method m is declared in C or one of its
superclasses

…	

…
…	

Type of v[0]: Animal	

Another example
11

a0 null a1	
v	

 0 1 2	

a0	

Animal	

Cat	
Cat(String, int)���
getNoise() toString()���
getWeight()	

age���
Animal(String, int)���
isOlder(Animal)	

5
a1	

Animal	

Dog	
Dog(String, int)���
getNoise() toString()	

age���
Animal(String, int)���
isOlder(Animal)	

6

Should this call be allowed?
Should program compile?

 v[0].getWeight() Should this call be allowed?
Should program compile?

 v[k].getWeight()

Each element v[k] is of	

type Animal.	

From v[k], see only what is in
partition Animal and
partitions above it.	

View of object based on the type
12

a0 null a1	
v	

 0 1 2	

a0	

Animal	

Cat	
Cat(String, int)���
getNoise() toString()���
getWeight()	

age���
Animal(String, int)���
isOlder(Animal)	

5
a1	

Animal	

Dog	
Dog(String, int)���
getNoise() toString()	

age���
Animal(String, int)���
isOlder(Animal)	

6

getWeight() not in class Animal or
Object. Calls are illegal, program
does not compile:

 v[0].getWeight() v[k].getWeight()

Components
are in lower
partitions, but
can’t see them

Animal

9/10/14	

3	

Casting up class hierarchy
13

a0	

Animal	

Cat	
Cat(String, int)���
getNoise() toString()���
getWeight()	

age���
Animal(String, int)���
isOlder(Animal)	

5

a1	

Animal	

Dog	
Dog(String, int)���
getNoise() toString()	

age���
Animal(String, int)���
isOlder(Animal)	

6

You know about casts like	

 (int) (5.0 / 7.5)	

 (double) 6	

 double d= 5; // automatic cast	

Object	

Animal	

Dog	
 Cat	

Discuss casts up/down class hierarchy.	

 Animal h= new Cat(“N”, 5);	

 Cat c= (Cat) h;	

A class cast doesn’t change the object. It
just changes the perpective –how it is
viewed!

age���
Animal(String, int)���
isOlder(Animal)	

Explicit casts: unary prefix operators
14

a0	

Animal	

Cat	
Cat(String, int)���
getNoise() toString()���
getWeight()	

5

c	
 a0	

Cat	

Object	

equals() …

Rule: an object can be cast to the name
of any partition that occurs within it —
and to nothing else.
a0 maybe cast to Object, Animal, Cat.
An attempt to cast it to anything else
causes an exception

(Cat) c	

(Object) c	

(Animal) (Animal) (Cat) (Object) c	

These casts don’t take any time. The object
does not change. It’s a change of perception	

Implicit upward cast
15

a0	

Animal	

Cat	
Cat(String, int)���
getNoise() toString()���
getWeight()	

age���
Animal(String, int)���
isOlder(Animal)	

5

a1	

Animal	

Dog	
Dog(String, int)���
getNoise() toString()	

age���
Animal(String, int)���
isOlder(Animal)	

6

public class Animal {
 /** = "this Animal is older than h" */
 public boolean isOlder(Animal h) {
 return age > h.age;
 }

Call c.isOlder(d)

h is created. a1 is cast up to class
Animal and stored in h

d	
 a1	

Dog	

c	
 a0	

Cat	

h	
 a1	

Animal	

Upward casts done
automatically when needed

Example
16

a1	

Animal	

Dog	
Dog(String, int)���
getNoise() toString()	

age���
Animal(String, int)���
isOlder(Animal)	

6public class Animal {
 /** = "this is older than h" */
 public boolean isOlder(Animal h) {
 return age > h.age;
 }

h	
 a1	

Animal	

Type of h is Animal. Syntactic
property.
Determines at compile-time
what components can be used:
those available in Animal

If a method call is legal,
the overriding rule
determines which method
is called

Components used from h
17

a1	

Animal	

Dog	
Dog(String, int)���
getNoise() toString()	

age���
Animal(String, int)���
isOlder(Animal)	

6public class Animal {
 /** = "this is older than h" */
 public boolean isOlder(Animal h) {
 return age > h.age;
 }

h	
 a1	

Animal	

h.toString() OK —it’s in class Object partition

h.isOlder(…) OK —it’s in Animal partition

h.getWeight() ILLEGAL —not in Animal
 partition or Object partition

By overriding
rule, calls

toString() in
Cat partition

Explicit downward cast
18

h	
 a0	

Animal	

public class Animal {
 // If Animal is a Cat, return its weight;
 otherwise, return 0.
 public int checkWeight(Animal h) {
 if (!)
 return 0;
 // { h is a Cat }
 Cat c= (Cat) h ; // downward cast
 return c.getWeight();
}

a0	

Animal	

Cat	
Cat(String, int)���
getNoise() toString()���
getWeight()	

age���
Animal(String, int)���
isOlder(Animal)	

5

(Dog) h leads to runtime error.	

Don’t try to cast an object to
something that it is not!	

9/10/14	

4	

Operator instanceof, explicit downward cast
19

h	
 a0	

Animal	

public class Animal {
 // If Animal is a cat, return its weight;
 otherwise, return 0.
 public int checkWeight(Animal h) {
 if (! (h instanceof Cat))
 return 0;
 // { h is a Cat }
 Cat c= (Cat) h ; // downward cast
 return c.getWeight();
}

a0	

Animal	

Cat	
Cat(String, int)���
getNoise() toString()���
getWeight()	

age���
Animal(String, int)���
isOlder(Animal)	

5

<object> instanceof <class>	

true iff object is an instance of the
class —if object has a partition for
class	

Function equals
20

public class Object {
 /** Return true iff this object is
 * the same as ob */
 public boolean equals(Object b) {
 return this == b;
 }
}

x.equals(y) is same as
x == y
except when x is null! y	
 ?	

Object	

x	
 ?	

Object	

This gives a null-pointer
exception:
 null.equals(y)

a0	

Object	
���

equals(Object)	

Overriding function equals
21

Override function equals in a class to give meaning to:

“these two (possibly different) objects of the class have
the same values in some of their fields”

For those who are mathematically inclined, like any
equality function, equals should be reflexive,
symmetric, and transitive.

Reflexive: b.equals(b)
Symmetric: b.equals(c) = c.equals(b)
Transitive: if b.equals(c) and c.equals(d), then b.equals(d)

Function equals in class Animal
22

Animal	

a0	

name age���
Animal(String, int)���
equals()���
toString()	

…	

Object	

equals(Object)	

public class Animal {
 /** = “h is an Animal with the same
 values in its fields as this Animal” */
 public boolean equals (Object h) {

 if (!(h instanceof Animal))
 return false;
 Animal ob= (Animal) h;
 return name.equals(ob.name) &&
 age == ob.age;
}

toString()

1. Because of h is an Animal in spec,
 need the test h instanceof Animal

Function equals in class Animal
23

Animal	

a0	

name age���
Animal(String, int)���
equals()���
toString()	

…	

Object	

equals(Object)	

public class Animal {
 /** = “h is an Animal with the same
 values in its fields as this Animal” */
 public boolean equals (Object h) {

 if (!(h instanceof Animal))
 return false;
 Animal ob= (Animal) h;
 return name.equals(ob.name) &&
 age == ob.age;
}

toString()

2. In order to be able to reference fields in partition Animal,
 need to cast h to Animal

Function equals in class Animal
24

Animal	

a0	

name age���
Animal(String, int)���
equals()���
toString()	

…	

Object	

equals(Object)	

public class Animal {
 /** = “h is an Animal with the same
 values in its fields as this Animal” */
 public boolean equals (Object h) {

 if (!(h instanceof Animal))
 return false;
 Animal ob= (Animal) h;
 return name.equals(ob.name) &&
 age == ob.age;
}

toString()

3. Use String equals function to check for equality of String
values. Use == for primitive types

9/10/14	

5	

Why can’t the parameter type be Animal?
25

Animal	

a0	

name age���
Animal(String, int)���
equals()���
toString()	

…	

Object	

equals(Object)	

public class Animal {
 /** = “h is an Animal with the same
 values in its fields as this Animal” */
 public boolean equals (Animal h) {

 if (!(h instanceof Animal))
 return false;
 Animal ob= (Animal) h;
 return name.equals(ob.name) &&
 age == ob.age;
}

toString()

What is wrong with this?

