
8/26/14	

1	

CS/ENGRD 2110
FALL 2014

Lecture 2: Objects and classes in Java
http://courses.cs.cornell.edu/cs2110

1 Java OO (Object Orientation)

2

Note: Assignment A0 and VideoNote available

Python and Matlab have objects and classes.
Strong-typing nature of Java changes how OO is done and how useful
it is. Put aside your previous experience with OO (if any).
This lecture:

First: describe objects, demoing their creation and use.

Second: Show you a class definition and how it contains definitions of
functions and procedures that appear in each object of the class.

Third: Talk about keyword null.

Fourth (if there is time). Show you a Java application, a class with a
“static” procedure with a certain parameter.

Homework
3

1.  Study material of this lecture.
2.  Visit course website, click on Resources and then on Code

Style Guidelines. Study
 3. Documentation
 3.1 Kinds of comments
 3.2 Don’t over-comment
 3.4 Method specifications
 3.4.1 Precondition and postcondition

3.  Spend a few minutes perusing slides for lecture 3; bring them
to lecture 3.

Java OO
4

References to course text and JavaSummary.pptx
 Objects: B.1 slide 10-16

 Calling methods: B.2-B.3 slide 18

 Class definition: B.5 slide 11

 public, private: B.5 slide 11, 12

 Indirect reference, aliasing: B.6 slide 17
 Method declarations: B.7

 Parameter vs argument: B.12-B.14
 slide 14

Text mentions fields of
an object. We cover
these in next lecture

Text uses value-producing
method for function and
void method for procedure.
Get used to terminology:
function and procedure

Methods may have parameters
Method calls may have arguments

Drawing an object of class javax.swing.JFrame
5

Object is associated with a window on your computer monitor

JFrame@25c7f37d

hide() show()
setTitle(String) getTitle()
getX() getY() setLocation(int, int)
getWidth() getHeight() setSize(int,int)
…

JFrame

Name of object, giving
class name and its
memory location
(hexadecimal).
Java creates name
when it creates object

Function: returns a value; call on it is an expression
Procedure: does not return a value; call is a statement to do something

Object contains methods (functions and procedures), which can be
called to operate on the object

Evaluation of new-expression creates an object
6

Evaluation of

 new javax.swing.JFrame()

creates an object and gives as its value the name of the object

JFrame@25c7f37d

hide() show()
setTitle(String) getTitle()
getX() getY() setLocation(int, int)
getWidth() getHeight() setSize(int,int)
…

JFrame

If evaluation creates this object, value of expression is

 JFrame@25c7f37d

JFrame@25c7f37d

2 + 3 + 4

9

8/26/14	

2	

A class variable contains the name of an object
7

Type JFrame: Names of objects of class JFrame

JFrame@25c7f37d

hide() show()
setTitle(String) getTitle()
getX() getY() setLocation(int, int)
getWidth() getHeight() setSize(int,int)
…

JFrame

h ?
JFrame

JFrame h;
h= new javax.swing.JFrame();

If evaluation of new-exp creates
the object shown, name of object
is stored in h

JFrame@25c7f37d

Consequence: a class
variable contains not an

object but the name of an
object. Objects are

referenced indirectly.

A class variable contains the name of an object
8

If variable h contains the name of an object, you can call
methods of the object using dot-notation:

JFrame@25c7f37d

hide() show()
setTitle(String) getTitle()
getX() getY() setLocation(int, int)
getWidth() getHeight() setSize(int,int)
…

JFrame

h ?
JFrame

Procedure calls: h.show(); h.setTitle(“this is a title”);

Function calls: h.getX() h.getX() + h.getWidth()

JFrame@25c7f37d

Class definition
9

Class definition: Describes format of an object (instance) of the class.	

 /** description of what the class is for */	

 public class C {	

	

 	

	

 }	

This is a comment	

declarations of methods (in any order)	

Access modifier
public means C can
be used anywhere

Class definition C goes in its own file named
 C.java

On your hard drive, have separate directory for each Java
program you write; put all class definitions for program in
that directory. You’ll see this when we demo.

First class definition
10

/** An instance (object of the class) has (almost) no methods */
public class C {

}

C@25c7fd38

C

k ?
C

C@25c7fd38
Then, execution of

 C k;
 k= new C();

creates object shown to right
and stores its name in k

Class extends (is a subclass of) JFrame
11

/** An instance is a subclass of JFrame */
public class C extends javax.swing.JFrame {

}

C: subclass of JFrame
JFrame: superclass of C
C inherits all methods
that are in a JFrame

C@6667f34e

hide() show()
setTitle(String) getTitle()
getX() getY() setLocation(int, int)
getWidth() getHeight() …

JFrame

C
Object has 2 partitions:
one for JFrame methods,
one for C methods Easy re-use of program part!

Class definition with a function definition
12

/** An instance is a subclass of JFrame with a function area */
public class C extends javax.swing.JFrame {
 /** Return area of window */
 public int area() {
 return getWidth() * getHeight();
 }
}

C@6667f34e

…
getWidth() getHeight()

area()

JFrame

C

Spec, as a comment

You know it is a function
because it has a return type

Function calls automatically
call functions that are in the
object

8/26/14	

3	

Inside-out rule for finding declaration
13

/** An instance … */
public class C extends javax.swing.JFrame {
 /** Return area of window */
 public int area() {
 return getWidth() * getHeight();
 }
}

C@6667f34e
 getWidth()
 getHeight() …

 area() {
 return getWidth() * getHeight();
 }

JFrame

C

The whole
method is in

the object

To what declaration does a
name refer? Use inside-out rule:
Look first in method body,
starting from name and moving
out; then look at parameters;
then look outside method in the
object.

Inside-out rule for finding declaration
14

/** An instance … */
public class C extends …JFrame {
 /** Return area of window */
 public int area() {
 return getWidth() * getHeight();
 }
}

C@6667f34e
 getWidth()
 getHeight() …

 area() {
 return getWidth() * getHeight();
 }

JFrame

C

C@2abcde14
 getWidth()
 getHeight() …

 area() {
 return getWidth() * getHeight();
 }

JFrame

C

Function area: in each object.
getWidth() calls function
getWidth in the object in
which it appears.

Class definition with a procedure definition
15

/** An instance is a JFrame with more methods */
public class C extends javax.swing.JFrame {
 public int area() {
 return getWidth() * getHeight();
 }

 /** Set width of window to its height */
 public void setWtoH() {
 setSize(getHeight(), getHeight());
 }
}

C@6667f34e

…
setSize(int, int)
getWidth() getHeight()

area()
setWtoH()

JFrame

C
It is a procedure
because it has void
instead of return type

Call on
procedure
setSize

Using an object of class Date
16

/** An instance is a JFrame with more methods */
public class C extends javax.swing.JFrame {
 …
 /** Put the date and time in the title */
 public void setTitleToDate() {

 }
}

C@6667f34e

…
setSize(int, int)
setTitle(String)

area() { }
setWtoH() setTitleToDate

JFrame

C

An object of class java.util.Date
contains the date and time at
which it was created.
It has a function toString(), which
yields the data as a String.

setTitle((new java.util.Date()).toString());

About null
17 	

 v1 C@16	

	

 v2 null	

	

C@16

getName()
C

null denotes the absence of a name.	

v2.getName() is a mistake! Program stops with a
NullPointerException 	

You can write assignments like: v1= null;	

and expressions like: v1 == null	

Hello World!
18

/** A simple program that prints Hello, world! */
public class myClass {

 /** Called to start program. */
 public static void main(String[] args) {
 System.out.println("Hello, world!");
 }
}

args is an array of
String elements

We explain static next week.
Briefly: there is only one copy
of procedure main, and it is
not in any object

