
1�

abstract classes�

1�

Circle@x�

Circle�

Shape�

Object�

Rect@z�

fields for�
(x, y) coords�

Rect�

 Shape�

 Object�

Teach using the problem of
using objects to represent
shapes in the plane�

fields for�
length, width�

fields for�
(x, y) coords�
field for�
radius�

Every shape has a position
(x, y) in the plane, so use a
superclass Shape to hold the
point.�
Subclass has necessary
fields to describe shape.�

Circle@y�

Circle�

Shape�

Object�

fields for�
(x, y) coords�
field for�
radius�

Every subclass has an area() function�

2�

We are dealing with shapes that have areas:�
Circles, Rectangles, Triangles, Polyhedrons,
Squares, etc. �

Circle@x�

…�
area()�

…�

Circle�

Shape�

…� Object�

Rect@y�

…�
area()�

…�

Rect�

Shape�

…� Object�

Rect@z�

…�
area()�

…�

Rect�

Shape�

…� Object�

Rect@z�

…�
area()�

…�

Rect�

Shape�

…� Object�

Therefore, each subclass has a
function area(), which returns its
area.�

Making our points with scaled-down classes�

3�

Circle@x�

…�
area()�

…�

Circle�

Shape�

…� Object�

Rect@y�

…�
area()�

…�

Rect�

Shape�

…� Object�

public class Shape { }�
�
public class Circle extends Shape {�
 public double area() {�
 return 1;�
 }�
 }�
�
public class Rect extends Shape {�
 public double area() {�
 return 1;�
 } �
}�

Motivating abstract classes�

4�
Shape[]�

Circle@x�

…�
area()�

…�

Circle�

Shape�

…� Object�

b�

Shape@y�

…� Shape�

…� Object�

Rect@z�

…�
area()�

…�

Rect�

Shape�

…� Object�

0 1 2 3 �

Rect@z�

…�
area()�

…�

Rect�

Shape�

…� Object�

b[1].area() is illegal, even though each�
Subclass object has function area()�

Don’t want to cast down!
Instead, define area() in
Shape�

Cast?�
if (b[1] instanceof Rect)�
 r= ((Rect)b[1]).area();�

Motivating abstract classes�

5�
Shape[]�

area() in class Shape doesn’t return useful value� Circle@x�

…�
area()�

…�

Circle�

Shape�

…� Object�

b�

Rect@y�

…�
area()�

…�

Rect�

Shape�

…� Object�

Trian@z�

…�
area()�

…�

Trian�

Shape�

…� Object�

area()�area()�

area()�

0 1 2 3 4 … �

…�

Trian@z�

…�
area()�

…�

Trian�

Shape�

…� Object�

public double area() { return 0.0; }�

Problem: How to force
subclasses to override area?�

Problem: How to
ban creation of�
Shape objects�

area()�

Abstract class and method solves both problems�

6�

public abstract class Shape {�

�

 public abstract double area();�
 …�
}�

Abstract class. Means can’t create object of Shape:�
 new Shape(…) syntactically illegal�

Abstract method. Means it must be
overridden in any subclass�

Place abstract method
only in abstract class.�
�
 Body is replaced by ;�

7�

Can extend only one class�
public class C extends C1, C2 { �
 public void p() {�

 …; h= m(); …�
 }�

}�

public class C1 {�
 public int m() {�
 return 2;�
 }�
 …�
}�

public class C2 {�
 public int m() {�
 return 3;�
 }�
 …�
}�

if we allowed multiple
inheritance, which m used?�

About Interfaces�

8�

Can extend only one class�

public class C extends C1, C2 { … }�

public abstract class C1 {
 public abstract int m();
 public int p() {…}
}

public abstract class C2 {
 public abstract int m();
 public int q(){…}
}

Use abstract classes? Seems OK, because method bodies not
given!�

But Java does not allow this, because abstract classes can have
non-abstract methods�

Instead, Java has a construct, the interface, which is like an
abstract class but has more restrictions.�

9�

Interface declaration and use of an interface�
public class C implements C1, C2 {�
…�

}� public interface C1 {
 int m();
 int p();
 int FF= 32;
}

public interface C2 {
 int m();
 int q();
}

Methods declared in�
 interface are automatically public,�
 abstract�
Use of public, abstract is optional�
Use ; not { … }�

Field declared in�
 interface automatically�
 public, static, final�
Must have initialization�
Use of public, static, final
optional�

Eclipse: Create new interface? Create new
class, change keyword class to interface�

C must override all
methods in C1 and C2�

2�

Casting with interfaces�

10�

class B extends A implements C1, C2 { … }�

interface C1 { … }�

interface C2 { … }�

class A { … }�
b= new B();�
What does object b look like?�

A�

Object�

B�

Draw b like this, showing�
only names of partitions:�

Add C1, C2 as new dimensions:�

C2�C1�

Object b has 5 perspectives. Can
cast b to any one of them at any
time. Examples:�

(C2) b (Object) b�
(A)(C2) b (C1) (C2) b�
 �
You’ll see such casting later�

Same rules apply to classes and interface�

11�

class B extends A implements C1, C2 { … }�

interface C1 { … }�

interface C2 { … }�

class A { … }�

B b= new B();�
C2 c= b;�

A�

Object�

B�

C2�C1�

c� B@xy�
C2�

b� B@xy�
B�

c.m(…) syntactically legal only if m declared in C2�

c.m(…) calls overriding m declared in B�

12�
Shape[]�

Want to sort b by shape areas.�
Don’t want to write a sort procedure —many
already exist. Avoid duplication of effort!�

Circle@x�

…�
area()�

…�

Circle�

Shape�

…� Object�

b�

Rect@y�

…�
area()�

…�

Rect�

Shape�

…� Object�

Trian@z�

…�
area()�

…�

Trian�

Shape�

…� Object�

area()�area()�

area()�

0 1 2 3 4 … �
…�

Trian@z�

…�
area()�

…�

Trian�

Shape�

…� Object�

area()�

b could be sorted on many things:�
area�
distance from (0,0)�
x-coordinate�
…�

Sort array of Shapes�

13�
Shape[]�

Want to sort b by shape areas.�
Don’t want to write a sort procedure —many
already exist. Avoid duplication of effort!�

Circle@x�

…�
area()�

…�

Circle�

Shape�

…� Object�

b�

Rect@y�

…�
area()�

…�

Rect�

Shape�

…� Object�

Trian@z�

…�
area()�

…�

Trian�

Shape�

…� Object�

area()�area()�

area()�

0 1 2 3 4 … �
…�

Trian@z�

…�
area()�

…�

Trian�

Shape�

…� Object�

area()�

Sort array of Shapes�

Solution: Write a function
compareTo that tells whether
one shape has bigger area than
another.�
Tell sort procedure to use it.�

14�

Look at: interface java.lang.Comparable

/** Comparable requires method compareTo */
public interface Comparable {

 /** = a negative integer if this object < c,
 = 0 if this object = c,
 = a positive integer if this object > c.
 Throw a ClassCastException if c cannot
 be cast to the class of this object. */
 int compareTo(Object c);

}

Classes that
implement
Comparable�
Boolean�
Byte�
Double�
Integer�
…�
String�
BigDecimal�
BigInteger�
Calendar�
Time�
Timestamp�
…�
�
�

In class java.util.Arrays:�

public static void sort (Comparable[] a) {…} �

15�

1
5

Which class should implement Comparable?

Shape�

Object�

Circle�

Comparable�

First idea: all the subclasses
Circle, Rect, …�

Doesn’t work! Each element�
of b has static type Shape,
and compareTo isn’t
available in Shape partition � Shape[] b= …�

…�

Shape�

Object�

Circle�

Comparable�
Use this. Shape must
implement Comparable�

Shape[]�
b� …�

16�

1
6

Shape should implement Comparable

Shape[] b= …�

…�

Arrays.sort(b);�
�
�

Shape�

Object�

Circle�

Comparable�

Shape[]�
b� …�

In class java.util.Arrays:�

public static void sort (Comparable[] a) {…} �

17�

public abstract class Shape implements Comparable {�
 …�
 /** If c is not a Shape, throw a CastClass exception.�
 Otherwise, return -1, 0, or 1 depending on whether this�
 shape has smaller area than c, same area, or greater area */�
 public @Override int compareTo(Object c) {�
�
 double diff = area() - ((Shape) c).area();�
 if (diff < 0) return -1;�
 if (diff > 0) return 1;�
 return 0;�
 }�
 …�

Cast needed so that
area() can be used. If c
not a Shape, exception
thrown�

Class Shape implements Comparable�

18�

Beauty of interfaces:

Arrays.sort sorts an array or list C[] for any class C, as
long as C implements interface Comparable —and thus
implements compareTo to say which of two elements is
bigger.

Java Library static methods:�
Arrays.sort(Comparable[] a)�

Collections.sort(List<Comparable> list)�
�
Class arrays has many other useful static methods

