
THREADS AND
CONCURRENCY

Lecture 22 – CS2110 – Spring 2013

Graphs summary

 Dijkstra: given a vertex v, finds shortest path from v
to x for each vertex x in the graph
 Key idea: maintain a 5-part invariant on three sets
1. Vertices already visited (“settled”). Distance known
2. Frontier nodes. One hop from the settled ones
3. Future nodes. > one hop from the settled ones

 Algorithm: move the “closest” frontier node to
settled, then adjust frontier and future sets to
restore the invariant.

2

Graphs summary

 Minimum spanning tree: a tree that reaches every
node while minimizing the summed weight of edges
 Prim’s algorithm: repeatedly pick the lowest-weight

edge that will connect some previously disconnected
components. A “greedy” algorithm.

 Kruskal’s algorithm: start with the whole graph,
repeatedly remove the highest-weight edge that won’t
disconnect the spanning tree. Also “greedy”.

 In all three cases, correctness is established using
inductive proofs that focus on maintaining invarients!

3

Today: Start a new topic

 Modern computers have “multiple cores”
 Instead of a single CPU on the chip
 5-10 common. Intel has prototypes with 80!

 And even with a single core your program may
have more than one thing “to do” at a time
 Argues for having a way to do many things at once

 Finally, we often run many programs all at once

4

Why Multicore?

 Moore’s Law: Computer speeds and memory densities
nearly double each year

5

But a fast computer runs hot

 Power dissipation rises as the square of the CPU
clock rate

 Chips were heading towards melting down!

 Multicore: with four
CPUs (cores) on one chip,
even if we run each at half
speed we get more overall
performance!

6

Keeping those
cores busy

7

• The operating system provides
support for multiple “processes”

• In reality there there may be fewer
processors than processes

• Processes are an illusion – at the
hardware level, lots of multitasking

– memory subsystem

– video controller

– buses

– instruction prefetching

• Virtualization can even let one
machine create the illusion of many
machines (they share disks, etc)

What is a Thread?

 A separate “execution” that runs within a single
program and can perform a computational task
independently and concurrently with other threads

 Many applications do their work in just a single
thread: the one that called main() at startup
 But there may still be extra threads...
 ... Garbage collection runs in a “background” thread
 GUIs have a separate thread that listens for events and

“dispatches” upcalls

 Today: learn to create new threads of our own

8

What is a Thread?

 A thread is a kind of object that “independently
computes”
 Needs to be created, like any object
 Then “started”. This causes some method (like main()) to

be invoked. It runs side by side with other thread in the
same program and they see the same global data

 The actual execution could occur on distinct CPU
cores, but doesn’t need to
 We can also simulate threads by multiplexing a smaller

number of cores over a larger number of threads

9

Concurrency

 Concurrency refers to a single program in which
several threads are running simultaneously
 Special problems arise
 They see the same data and hence can interfere with

each other, e.g. if one thread is modifying a complex
structure like a heap while another is trying to read it

 In cs2110 we focus on two main issues:
 Race conditions
 Deadlock

10

Thread class in Java

 Threads are instances of the class Thread
 Can create many, but they do consume space & time

 The Java Virtual Machine created the thread that
executes your main method.

 Threads have a priority
 Higher priority threads are executed preferentially
 A newly created Thread has initial priority equal to the

thread that created it (but can change)

11

Creating a new Thread (Method 1)
12

class PrimeThread extends Thread {
long a, b;

PrimeThread(long a, long b) {
this.a = a; this.b = b;

}

public void run() {
//compute primes between a and b
...

}
}

PrimeThread p = new PrimeThread(143, 195);
p.start();

overrides
Thread.run()

If you were to call run() directly
no new thread is used:

the calling thread will run it
... but if you create a new object and

then call start(),
Java invokes run() in new thread

Creating a new Thread (Method 2)
13

class PrimeRun implements Runnable {
long a, b;

PrimeRun(long a, long b) {
this.a = a; this.b = b;

}

public void run() {
//compute primes between a and b
...

}
}

PrimeRun p = new PrimeRun(143, 195);
new Thread(p).start();

Example
14

Thread[Thread-0,5,main] 0
Thread[main,5,main] 0
Thread[main,5,main] 1
Thread[main,5,main] 2
Thread[main,5,main] 3
Thread[main,5,main] 4
Thread[main,5,main] 5
Thread[main,5,main] 6
Thread[main,5,main] 7
Thread[main,5,main] 8
Thread[main,5,main] 9
Thread[Thread-0,5,main] 1
Thread[Thread-0,5,main] 2
Thread[Thread-0,5,main] 3
Thread[Thread-0,5,main] 4
Thread[Thread-0,5,main] 5
Thread[Thread-0,5,main] 6
Thread[Thread-0,5,main] 7
Thread[Thread-0,5,main] 8
Thread[Thread-0,5,main] 9

public class ThreadTest extends Thread {

public static void main(String[] args) {
new ThreadTest().start();
for (int i = 0; i < 10; i++) {

System.out.format("%s %d\n",
Thread.currentThread(), i);

}
}

public void run() {
for (int i = 0; i < 10; i++) {

System.out.format("%s %d\n",
Thread.currentThread(), i);

}
}

}

Example
15

Thread[main,5,main] 0
Thread[main,5,main] 1
Thread[main,5,main] 2
Thread[main,5,main] 3
Thread[main,5,main] 4
Thread[main,5,main] 5
Thread[main,5,main] 6
Thread[main,5,main] 7
Thread[main,5,main] 8
Thread[main,5,main] 9
Thread[Thread-0,4,main] 0
Thread[Thread-0,4,main] 1
Thread[Thread-0,4,main] 2
Thread[Thread-0,4,main] 3
Thread[Thread-0,4,main] 4
Thread[Thread-0,4,main] 5
Thread[Thread-0,4,main] 6
Thread[Thread-0,4,main] 7
Thread[Thread-0,4,main] 8
Thread[Thread-0,4,main] 9

public class ThreadTest extends Thread {

public static void main(String[] args) {
new ThreadTest().start();
for (int i = 0; i < 10; i++) {

System.out.format("%s %d\n",
Thread.currentThread(), i);

}
}

public void run() {
currentThread().setPriority(4);
for (int i = 0; i < 10; i++) {

System.out.format("%s %d\n",
Thread.currentThread(), i);

}
}

}

Example
16

Thread[main,5,main] 0
Thread[main,5,main] 1
Thread[main,5,main] 2
Thread[main,5,main] 3
Thread[main,5,main] 4
Thread[main,5,main] 5
Thread[Thread-0,6,main] 0
Thread[Thread-0,6,main] 1
Thread[Thread-0,6,main] 2
Thread[Thread-0,6,main] 3
Thread[Thread-0,6,main] 4
Thread[Thread-0,6,main] 5
Thread[Thread-0,6,main] 6
Thread[Thread-0,6,main] 7
Thread[Thread-0,6,main] 8
Thread[Thread-0,6,main] 9
Thread[main,5,main] 6
Thread[main,5,main] 7
Thread[main,5,main] 8
Thread[main,5,main] 9

public class ThreadTest extends Thread {

public static void main(String[] args) {
new ThreadTest().start();
for (int i = 0; i < 10; i++) {

System.out.format("%s %d\n",
Thread.currentThread(), i);

}
}

public void run() {
currentThread().setPriority(6);
for (int i = 0; i < 10; i++) {

System.out.format("%s %d\n",
Thread.currentThread(), i);

}
}

}

Example
17

waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
done

public class ThreadTest extends Thread {
static boolean ok = true;

public static void main(String[] args) {
new ThreadTest().start();
for (int i = 0; i < 10; i++) {

System.out.println("waiting...");
yield();

}
ok = false;

}

public void run() {
while (ok) {

System.out.println("running...");
yield();

}
System.out.println("done");

}
}

If threads happen to be sharing
a CPU, yield allows other waiting
threads to run. But if there are

multiple cores, yield isn’t needed

Terminating Threads is tricky

 Easily done... but only in certain ways
 The safe way to terminate a thread is to have it return

from its run method
 If a thread throws an uncaught exception, whole program

will be halted (but it can take a second or too...)

 There are some old APIs but they have issues: stop(),
interrupt(), suspend(), destroy(), etc.
 Issue: they can easily leave the application in a

“broken” internal state.
 Many applications have some kind of variable telling

the thread to stop itself.

18

Threads can pause

 When active, a thread is “runnable”.
 It may not actually be “running”. For that, a CPU must

schedule it. Higher priority threads could run first.

 A thread can also pause
 It can call Thread.sleep(k) to sleep for k milliseconds
 If it tries to do “I/O” (e.g. read a file, wait for mouse

input, even open a file) this can cause it to pause
 Java has a form of locks associated with objects.

When threads lock an object, one succeeds at a time.

19

Background (daemon) Threads

 In many applications we have a notion of
“foreground” and “background” (daemon) threads
 Foreground threads are the ones doing visible work,

like interacting with the user or updating the display
 Background threads do things like maintaining data

structures (rebalancing trees, garbage collection, etc)

 On your computer, the same notion of background
workers explains why so many things are always
running in the task manager.

20

Race Conditions

 A “race condition” arises if two or more threads
access the same variables or objects concurrently
and at least one does updates

 Example: Suppose t1 and t2 simulatenously execute
the statement x = x + 1; for some static global x.
 Internally, this involves loading x, adding 1, storing x
 If t1 and t2 do this concurrently, we execute the

statement twice, but x may only be incremented once
 t1 and t2 “race” to do the update

21

Race Conditions

 LOAD X

 ADD 1

 STORE X

 ...
 LOAD X
 ADD 1
 STORE X

Thread t1 Thread t2

22

 Suppose X is initially 5

 ... after finishing, X=6! We “lost” an update

Race Conditions

 Race conditions are bad news
 Sometimes you can make code behave correctly

despite race conditions, but more often they cause bugs

 And they can cause many kinds of bugs, not just the
example we see here!

 A common cause for “blue screens”, null pointer
exceptions, damaged data structures

23

Example – A Lucky Scenario
24

private Stack<String> stack = new Stack<String>();

public void doSomething() {
if (stack.isEmpty()) return;
String s = stack.pop();
//do something with s...

}

Suppose threads A and B want to call doSomething(),
and there is one element on the stack

1. thread A tests stack.isEmpty() false
2. thread A pops ⇒ stack is now empty
3. thread B tests stack.isEmpty() ⇒ true
4. thread B just returns – nothing to do

Example – An Unlucky Scenario
25

private Stack<String> stack = new Stack<String>();

public void doSomething() {
if (stack.isEmpty()) return;
String s = stack.pop();
//do something with s...

}

Suppose threads A and B want to call doSomething(),
and there is one element on the stack

1. thread A tests stack.isEmpty() ⇒ false
2. thread B tests stack.isEmpty() ⇒ false
3. thread A pops ⇒ stack is now empty
4. thread B pops ⇒ Exception!

Synchronization

 Java has one “primary” tool for preventing these
problems, and you must use it by carefully and
explicitly – it isn’t automatic.
 Called a “synchronization barrier”
 We think of it as a kind of lock
 Even if several threads try to acquire the lock at once, only

one can succeed at a time, while others wait
When it releases the lock, the next thread can acquire it
 You can’t predict the order in which contending threads will

get the lock but it should be “fair” if priorities are the same

26

Solution – with synchronization
27

private Stack<String> stack = new Stack<String>();

public void doSomething() {
synchronized (stack) {

if (stack.isEmpty()) return;
String s = stack.pop();

}
//do something with s...

}

• Put critical operations in a synchronized block
• The stack object acts as a lock
• Only one thread can own the lock at a time

synchronized block

Solution – Locking
28

public void doSomething() {
synchronized (this) {

...
}

}

public synchronized void doSomething() {
...

}

•You can lock on any object, including this

is equivalent to

Synchronization+priorities

 Combining mundane features can get you in trouble
 Java has priorities... and synchronization

 But they don’t “mix” nicely
 High-priority runs before low priority
 ... The lower priority thread “starves”

 Even worse...
 With many threads, you could have a second high

priority thread stuck waiting on that starving low
priority thread! Now both are starving...

29

Fancier forms of locking

 Java developers have created various
synchronization ADTs
 Semaphores: a kind of synchronized counter
 Event-driven synchronization

 The Windows and Linux and Apple O/S all have
kernel locking features, like file locking

 But for Java, synchronized is the core mechanism

30

Deadlock

 The downside of locking – deadlock

 A deadlock occurs when two or more competing
threads are waiting for one-another... forever

 Example:
 Thread t1 calls synchronized b inside synchronized a
 But thread t2 calls synchronized a inside synchronized b
 t1 waits for t2... and t2 waits for t1...

31

Finer grained synchronization

 Java allows you to do fancier synchronization
 But can only be used inside a synchronization block
 Special primatives called wait/notify

32

wait/notify
33

boolean isRunning = true;

public synchronized void run() {
while (true) {

while (isRunning) {
//do one step of simulation

}
try {

wait();
} catch (InterruptedException ie) {}
isRunning = true;

}
}

public void stopAnimation() {
animator.isRunning = false;

}

public void restartAnimation() {
synchronized(animator) {

animator.notify();
}

}

relinquishes lock on animator –
awaits notification

notifies processes waiting
for animator lock

Suppose we put this inside an object called animator:

must be synchronized!

Summary

 Use of multiple processes and multiple threads within
each process can exploit concurrency
Which may be real (multicore) or “virtual” (an illusion)

 But when using threads, beware!
Must lock (synchronize) any shared memory to avoid non-

determinism and race conditions
 Yet synchronization also creates risk of deadlocks
 Even with proper locking concurrent programs can have

other problems such as “livelock”

 Serious treatment of concurrency is a complex topic
(covered in more detail in cs3410 and cs4410)

34

