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Graphs II
Lecture 21: Shortest paths and spanning trees

CS2110 – Spring 2013
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Tokyo subway map
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"This 'telephone' has too many shortcomings to be seriously 
considered as a means of communications. ” Western Union, 1876

"I think there is a world market for maybe five computers.” Watson, 
chair of IBM, 1943

"The problem with television is that the people must sit and keep their 
eyes glued on a screen; the average American family hasn't time for it.”
New York Times, 1949

"There is no reason anyone would want a computer in their home.”
Ken Olson, founder DEC, 1977

"640K ought to be enough for anybody.” Bill Gates, 1981
(Did he mean memory or money?)

"By the turn of this century, we will live in a paperless society.” Roger 
Smith, chair GM, 1986

"I predict the Internet... will go spectacularly supernova and in 1996 
catastrophically collapse.” Bob Metcalfe, 3Com founder, 1995
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Representations of Graphs

Adjacency List Adjacency Matrix

1 2
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Adjacency Matrix or Adjacency List?

n: # vertices    e: # edges        d(u) = outdegree of u

Adjacency List
– Uses space O(e+n)

– Iterate over all edges
in time O(e+n)

– Answer “Is there an
edge from u to v?” in
O(d(u)) time

– Better for sparse graphs
(fewer edges)

Adjacency Matrix
— Uses space O(n2)

— Iterate over all edges
edges in time O(n2)

— Answer “Is there an
edge from u to v?” in
O(1) time

— Better for dense graph
(lots of edges)
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Shortest paths in graphs

Problem of finding shortest (min-cost) path in a graph occurs 
often

– Shortest route between Ithaca and New York City

– Result depends on notion of cost:

• Least mileage

• Least time

• Cheapest

• Least boring

– Can represent all these “costs” as edge weights

How do we find a shortest path?
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Dijkstra’s shortest-path algorithm
6

Edsger Dijkstra, in an interview in 2010 (Comm ACM 53 (8): 41–
47), said: 

… the algorithm for the shortest path, which I designed in about 
20 minutes. One morning I was shopping in Amsterdam with my 
young fiance, and tired, we sat down on the cafe terrace to drink a 
cup of coffee, and I was just thinking about whether I could do 
this, and I then designed the algorithm for the shortest path. As I 
said, it was a 20-minute invention. [Took place in 1956]

Dijkstra, E.W. A note on two problems in Connexion with graphs. 
Numerische Mathematik 1, 269–271 (1959).

Visit http://www.dijkstrascry.com for all sorts of information on 
Dijkstra and his contributions. As a historical record, this is a gold 
mine.
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Dijkstra’s shortest-path algorithm
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Dijsktra describes the algorithm in English:

•When he designed it in 1956, most people were programming in 
assembly language!

•Only one high-level language: Fortran, developed by John 
Backus at IBM and not quite finished.

No theory of order-of-execution time —topic yet to be developed. 
In paper, Dijsktra says, “my solution is preferred to another one … 
“the amount of work to be done seems considerably less.”

Dijkstra, E.W. A note on two problems in Connexion with graphs. 
Numerische Mathematik 1, 269–271 (1959).
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Dijkstra’s shortest path algorithm
The n (> 0) nodes of a graph numbered 0..n-1.

L[0] = 2
L[1] = 5
L[2] = 6
L[3] = 7
L[4] = 0

v
4

2 4
1

3
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Each edge has a positive weight.

Some node v be selected as the start node.

Use an array L[0..n-1]: for each node w, store in 
L[w] the length of the shortest path from v to w.

weight(v1, v2) is the weight of the edge from node v1 to v2.

Calculate length of shortest path from v to each node.
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Dijkstra’s shortest path algorithm

Develop algorithm, not just present it.

Need to show you the state of affairs —the relation among all 
variables— just before each node i is given its final value L[i].

This relation among the variables is an invariant, because 
it is always true.

Because each node i (except the first) is given 
its final value L[i] during an iteration of a loop, 
the invariant is called a loop invariant.

L[0] = 2
L[1] = 5
L[2] = 6
L[3] = 7
L[4] = 0
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1. For a Settled node s, L[s] is length of shortest v --> s path.

2. All edges leaving S go to F.

3. For a Frontier node f, L[f] is length of shortest v --> f path
using only red nodes (except for f)

4. For a Far-off node b, L[b] = ∞

Frontier 
F

Settled 
S

Far off

f
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(edges leaving the black set and 
edges from the blue to the red set 
are not shown)

5. L[v] = 0, L[w] > 0 for w ≠ v

The loop invariant

v
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1. For a Settled node s, L[s] is length of shortest v --> r path.

2. All edges leaving S go to F.

3. For a Frontier node f, L[f] is length of shortest v --> f path
using only Settled nodes (except for f).

4. For a Far-off node b, L[b] = ∞.        

Theorem. For a node f in F with minimum L value (over nodes in 
F), L[f] is the length of the shortest path from v to f.

Frontier 
F

Settled 
S

Far off

f

Theorem about the invariant

fvg

g

Case 1: v is in S.

Case 2: v is in F. Note that L[v] is 0; it has minimum L value

L[g] ≥ L[f]

5. L[v] = 0, L[w] > 0 for w ≠ v
.
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1.  For s, L[s] is length of
shortest v-->s path.

2. Edges leaving S go to F.

S F          Far off

3. For f, L[f] is length of
shortest v --> f path using
red nodes (except for f).

4. For b in Far off, L[b] = ∞
5.  L[v] = 0, L[w] > 0 for w ≠ v

For all w, L[w]= ∞;   L[v]= 0;
F=  { v };  S=  { };

Theorem: For a node f in F
with min L value, L[f] is
shortest path length

v

The algorithm

Loopy question 1:

How does the loop start? What 
is done to truthify the invariant?
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When does loop stop? When is 
array L completely calculated?

while {

}

1.  For s, L[s] is length of
shortest v-->s path.

2. Edges leaving S go to F.

S F          Far off

3. For f, L[f] is length of
shortest v --> f path using
red nodes (except for f).

4. For b in Far off, L[b] = ∞
5. L[v] = 0, L[w] > 0 for w ≠ v

For all w, L[w]= ∞;   L[v]= 0;
F=  { v };  S=  { };

Theorem: For a node f in F
with min L value, L[f] is
shortest path length

F ≠ {}

The algorithm

Loopy question 2:
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How is progress toward 
termination accomplished?

while {

}

f= node in F with min L value;
Remove f from F, add it to S;1.  For s, L[s] is length of

shortest v-->s path.

2. Edges leaving S go to F.

S F          Far off

3. For f, L[f] is length of
shortest v --> f path using
red nodes (except for f).

4. For b, L[b] = ∞
5.  L[v] = 0, L[w] > 0 for w ≠ v

For all w, L[w]= ∞;   L[v]= 0;
F=  { v };  S=  { };

Theorem: For a node f in F
with min L value, L[f] is
shortest path length

f
F ≠  {}

The algorithm

Loopy question 3:

f
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How is the invariant 
maintained?

while {

}

f= node in F with min L value;
Remove f from F, add it to S;1.  For s, L[s] is length of

shortest v-->s path.

2. Edges leaving S go to F.

S F          Far off

3. For f, L[f] is length of
shortest v --> f path using
red nodes (except for f).

4. For b, L[b] = ∞
5. L[v] = 0, L[w] > 0 for w ≠ 
v

For all w, L[w]= ∞;   L[v]= 0;
F=  { v };  S=  { };

Theorem: For a node f in F
with min L value, L[f] is
shortest path length

F ≠ {}

for each edge (f,w) {

}

if (L[w]  is ∞) add w to F;

if (L[f] + weight (f,w) < L[w])
L[w]= L[f] + weight(f,w);

The algorithm

Loopy question 4:

f
w

w

Algorithm is finished

w
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For all w, L[w]= ∞;  L[v]= 0;
F=  { v };  S=  { };
while F ≠ {}  {

f= node in F with min L value;
Remove f from F, add it to S;
for each edge (f,w) {

if (L[w]  is ∞) add w to F;
if (L[f] + weight (f,w) < L[w])

L[w]= L[f] + weight(f,w);
}

}

About implementation 1. No need to implement S.
2. Implement F as a min-heap.
3. Instead of ∞, use

Integer.MAX_VALUE.

if (L[w] == Integer.MAX_VAL) {
L[w]=  L[f] + weight(f,w);
add w to F;

} else  L[w]= Math.min(L[w],
L[f] + weight(f,w));

S F
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For all w, L[w]= ∞;  L[v]= 0;
F=  { v };
while F  ≠ {} {

f=  node in F with min L value;
Remove f from F;
for each edge (f,w) {

if (L[w] == Integer.MAX_VAL) {
L[w]=  L[f] + weight(f,w);
add w to F;

}
else L[w]=  

Math.max(L[w], L[f] + weight(f,w));
}

}

Execution time
S F

n nodes, reachable from v. e ≥ n-1 edges
n–1  ≤  e  ≤  n*n

O(n)
O(n log n)

O(e)
O(n-1)
O(n log n)

O((e-(n-1)) log n)

O(n)

O(n + e)

outer loop:
n iterations.
Condition 
evaluated
n+1 times.

inner loop:
e iterations.
Condition 
evaluated
n + e times.

Complete graph: O(n2 log n). Sparse graph: O(n log n)

O(n)
O(1)
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Special Case: Shortest Paths for Unweighted Graphs

• Use breadth-first search

• Time is O(n + m) in 
adjacency list representation,

• Time is O(n2) in adjacency 
matrix representation

S BA

C D E

F
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A bit of history about the early years —middle 1950s

Dijkstra: For first 5 years, I programmed for non-existing 
machines. We would design the instruction code, I would check 
whether I could live with it, and my hardware friends would check 
that they could build it. I would write down the formal 
specification of the machine, and all three of us would sign it with 
our blood, so to speak. And then our ways parted.

I programmed on paper. I was quite used to developing programs 
without testing them. There was no way to test them, so you had 
to convince yourself of their correctness by reasoning about them. 
…

20

A bit of history

By the late 1960’s, we had computers, but there were huge 
problems.

•Huge cost and time over-runs

•Buggy software

•IBM operating system on IBM 360: 1,000 errors found every 
month. Sending patches out to every place with a computer was a 
huge problem (no internet, no email, no fax. Magnetic tapes)

•Individual example: Tony Hoare (Quicksort) led a large team in a 
British company on a disastrous project to implement an operating 
system.

Led to 1968/69 NATO Conferences on Software Engineering

21

1968 NATO Conference on Software Engineering

• In Garmisch, Germany

• Academicians and industry people attended

• For first time, people admitted they did not know what they 
were doing when developing/testing software. Concepts, 
methodologies, tools were inadequate, missing

• The term software engineering was born at this conference.

• The NATO Software Engineering Conferences: 

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/index.html

Get a good sense of the times by reading these reports!

22

1968 NATO Conference on Software Engineering

23

1968 NATO Conference on Software Engineering

24

1968/69 NATO Conferences on Software Engineering

Editors of the proceedings

Edsger Dijkstra   Niklaus Wirth   Tony Hoare       David Gries  

Beards
The reason why some people grow

aggressive tufts of facial hair
Is that they do not like to show

the chin that isn't there.
a grook by Piet Hein
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1968/69 NATO Conferences on Software Engineering

Edsger W. Dijkstra Niklaus Wirth Tony Hoare

incredible contributions to software engineering —a few:

Axiomatic basic for programming languages —define a language 
not in terms of how to execute programs but in terms of how to 
prove them correct.

Theory of weakest preconditions and a methodology for the formal 
development of algorithms

Stepwise refinement, structured programming

Programming language design: Pascal, CSP, guarded commands

Undirected Trees

An undirected graph is a tree if there is exactly 
one simple path between any pair of vertices

Root of tree? 
It doesn’t matter
—choose any vertex 
for the root

Facts About Trees

• #E = #V – 1
• connected
• no cycles

Any two of these 
properties imply the 
third and thus imply 
that the graph is a tree

27

Spanning Trees
A spanning tree of a connected undirected graph (V, E) is 
a subgraph (V, E') that is a tree28

• Same set of vertices V

• E' ⊆ E

• (V, E') is a tree

• Same set of vertices V

• Maximal set of edges that 
contains no cycle

• Same set of vertices V

• Minimal set of edges that 
connect all vertices

Three equivalent definitions

Minimum Spanning Trees

• Suppose edges are weighted.
• We want a spanning tree of minimum cost (sum of 

edge weights)

• Some graphs have exactly one minimum spanning 
tree.  Others have several trees with the same 
minimum cost, each of which is a minimum 
spanning tree

29

• Useful in network routing & other applications. 
For example, to stream a video

• Start with the whole graph – it is
connected

Finding a spanning tree: Subtractive method

• While there is a cycle: 
Pick an edge of a cycle and throw it out
– the graph is still connected (why?)

One step of the algorithm

Maximal set of 
edges that 

contains no 
cycle

nondeterministic
algorithm
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• Start with no edges

Finding a spanning tree: Additive method

• While the graph is not connected: 
Choose an edge that connects 2 
connected components and add it
– the graph still has no cycle (why?)

Minimal set 
of edges that 

connect all 
vertices

Tree edges will be red.
Black lines just show where original edges were.
Left tree consists of 5 unconnected components, each a node

nondeterministic
algorithm

Finding a spanning tree: Additive method

While the graph is not connected: 
Choose an edge that connects 2 
connected components and add it
– the graph still has no cycle (why?)

Minimal set 
of edges that 

connect all 
vertices

Make this more efficient.
1. Keep track of V1: Vertices that have been added, subset of V
2. Keep track of E1: Edges that have been added, subset of E
3. At each step, choose an edge from V1 to a node not in V1, so 

that graph (V1, E1) remained connected and thus a tree 

V1= {0};  E1= {};
while #V1 <  #V {

Choose an edge (u,v) where u in V1, v not in V1;
Add edge (u,v) to E1;  Add v to V1;

}

#V: size of V

Finding a spanning tree: Additive method

V1= {0};  E1= {};
// invariant: (V1, E1) is a tree
while #V1 < #V {

Choose an edge (u,v) where u in V1, v not in V1;
Add edge (u,v) to E1;  Add v to V1;

}

Minimal set 
of edges that 

connect all 
vertices

Finding a spanning tree: Additive method

V1= {0};  E1= {};
// invariant: (V1, E1) is a tree
while #V1 < #V {

Choose an edge (u,v) where u in V1, v not in V1;
Add edge (u,v) to E1;  Add v to V1;

}

Minimal set 
of edges that 

connect all 
vertices

Issue of choosing u. Have to look at all u in V1.

Use a subset S of V1; look for u only in S.
To make sure that we need only look at nodes in S, need property:
S-property: Any node not in V1 can be reached from a path with 
first node in S and rest of the nodes not in V1.

not in V1in S

Finding a spanning tree: Additive method

V1= {0};  E1= {}; 
while #V1 < #V {

Choose an edge (u,v) where u in V1, v not in V1;
Add edge (u,v) to E1;  Add v to V1;

}

Minimal set 
of edges that 

connect all 
vertices

V1= {0};  E1= {};  S= {0};
// invariant: (V1, E1) is a tree and S-property holds
while #V1 < #V {

Choose u in S;
if there is an edge (u, v) with v not in V1 {

add v to V1; add v to S;
add (u, v) to E1;

}
else remove u from S;

}

Above: old
Algorithm
To right: 
refinement 
using set S

Finding a spanning tree: Additive method Minimal set 
of edges that 

connect all 
vertices

V1= {0};  E1= {};  S= {0};
// invariant: (V1, E1) is a tree and S-property holds
while #V1 < #V {

Choose u in S;
if there is an edge (u,v) with v not in V1 {

add v to V1;  add v to S;
add (u, v) to E1;

} else remove u from S;
}

Use a stack for S: Depth-first spanning-tree construction
Use a queue for S: Breadth-first spanning-tree construction
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Depth-first spanning tree: S is a stack
Minimal set 

of edges that 
connect all 

vertices

V1= {0};  E1= {};  S= (0);
// invariant: (V1, E1) is a tree and S-property holds
while #V1 < #V {

u=  top element of S (don’t remove it);
if there is an edge (u,v) with v not in V1 {

add v to V1; push v onto S;
add (u, v) to E1;

} else pop top element of S;
}

0
1 2

3 4

S: 0

0
1 2

3 4

S: 1
0 0

1 2

3 4

S: 3
1
0 0

1 2

3 4

S: 2
3
1
0 0

1 2

3 4

S: 2
3
1
0

Breadth-first spanning tree: S is a queue
Minimal set 

of edges that 
connect all 

vertices

V1= {0};  E1= {};  S= (0);
// invariant: (V1, E1) is a tree and S-property holds
while #V1 < #V {

u=  first element of S (don’t remove it);
if there is an edge (u,v) with v not in V1 {

add v to V1; add v to end of S;
add (u, v) to E1;

} else remove first element of S;
}

0
1 2

3 4

S: 0

0
1 2

3 4

S: 0  1
0

1 2

3 4

S: 0  1  2

S: 1  2

0
1 2

3 4

S: 1  2   3
0

1 2

3 4

S: 1  2   3   4

Finding a spanning tree: Prim’s algorithm Minimal set 
of edges that 

connect all 
vertices

V1= {0};  E1= {};  S= {0};
// invariant: (V1, E1) is a tree …
while #V1 < #V {

Choose u in S;
if there is an edge (u,v) with v not in V1 {

add v to V1;  add v to S;
add (u, v) to E1;

} else remove u from S;
}

Suppose edges have > 0 weights
Minimal spanning tree: sum of 
weights is a minimum

Prim’s algorithm: a more deterministic version of the 
above algorithm: at each step, it chooses an edge (u, v) to 
add that has minimum weight over all possibilities.

Proved: Prim’s algorithm yields a minimal spanning tree.

Finding a spanning tree: Prim’s algorithm Minimal set 
of edges that 

connect all 
vertices

V1= {0};  E1= {};
SE=  set of edges leaving vertex 0;
// invariant: (V1, E1) is a tree and …
while #V1 < #V  {

Choose edge (u, v) in SE with min weight;
if (v in V1) remove (u, v) from SE
else { add v to V1; add (u, v) to E1;

add to SE all edges leaving v
with end vertex not in V1

}
}

edges have 
> 0 weights

Maintain not S but a set SE of edges (u, v) 
with u in S. If (u, v) is an edge and v is not 
in V1, (u, v) must be in SE

(V1, E1) is always a 
minimum spanning 

tree for graph V 
restricted to vertices 

in V1

Finding a spanning tree: Prim’s algorithm Minimal set 
of edges that 

connect all 
vertices

V1= {0};  E1= {};
SE=  set of edges leaving vertex 0;
// invariant: (V1, E1) is a tree and …
while #V1 < #V  {

Choose edge (u, v) in SE with min weight;
if (v in V1) remove (u, v) from SE
else { add v to V1; add (u, v) to E1;

add to SE all edges leaving v
with end vertex not in V1

}
}

edges have 
> 0 weights

Use an adjacency matrix: O(#V * #V)
Use an adjacency list and a min-heap for SE: O(#E log #V)
Use an adjacency list and a fibonacci heap:  O(#E + #V log #V)

Finding a minimal spanning tree
“Prim’s algorithm”

Developed in 1930 by Czech mathematician Vojtěch Jarník.
Práce Moravské Přírodovědecké Společnosti, 6, 1930, 
pp. 57–63. (in Czech)

Developed in 1957 by computer scientist Robert C. Prim.
Bell System Technical Journal, 36 (1957), pp. 1389–1401

Developed about 1956 by Edsger Dijkstra and published in  
in 1959. Numerische Mathematik 1, 269–271 (1959)
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Finding spanning tree: Kruskal’s algorithm Minimal set 
of edges that 

connect all 
vertices

V1= V;  E1= {};
SE=  E (set of all edges);
// invariant: (V1, E1) is a tree and …
while (V1, E1) not connected {

Remove from SE an edge (u, v) with minimum weight;
if (u, v) connects 2 different connected trees of (V1, E1)
then add (u, v) to E1

}
edges have 
> 0 weights

Need special data structures to make algorithm efficient.
Runs in time O(#E log #V).

Difference between Prim and Kruskal Minimal set 
of edges that 

connect all 
vertices

0

1 2

3 4

3

2

5

Here, Prim chooses (0, 1) 
Kruskal chooses (3, 4)

46 4
0

1 2

3 4

2

3

5

46 4

Here, Prim chooses (0, 2)
Kruskal chooses (3, 4)

45

Greedy algorithms

Greedy algorithm: An algorithm that uses the heuristic of making 
the locally optimal choice at each stage with the hope of finding 
the global optimum.

Dijkstra’s shortest-path algorithm makes a locally optimal choice: 
choosing the node in the Frontier with minimum L value and 
moving it to the Settled set. And, it is proven that it is not just a 
hope but a fact that it leads to the global optimum.

Similarly, Prim’s and Kruskal’s locally optimum choices of adding 
a minimum-weight edge have been proven to yield the global 
optimum: a minimum spanning tree.

BUT: Greediness does not always work!


