
INDUCTION 
Lecture 20 
CS2110 – Spring 2013 

A well-known scientist (some say it was Bertrand Russell) once gave a 
public lecture on astronomy. He described how the earth orbits around the 
sun and how the sun, in turn, orbits around the center of a vast collection of 
stars called our galaxy.  
 
At the end of the lecture, a little old lady at the back of the room got up and 
said: "What you have told us is rubbish. The world is really a flat plate 
supported on the back of a giant tortoise." The scientist gave a superior 
smile before replying, "What is the tortoise standing on?" "You're very 
clever, young man, very clever", said the old lady. "But it's turtles all the 
way down!” 



Overview: Reasoning about Programs 
2 

¨  Our broad problem: code is unlikely to be correct if 
we don’t have good reasons for believing it works 
¤ We need clear problem statements 
¤ And then a rigorous way to convince ourselves that 

what we wrote solves the problem 

¨  But reasoning about programs can be hard 
¤ Especially with recursion, concurrency 
¤ Today focus on recursion 



Overview: Reasoning about Programs 
3 

¨  Recursion 
¤  A programming strategy that solves a problem by reducing it to 

simpler or smaller instance(s) of the same problem 
¨  Induction 

¤  A mathematical strategy for proving statements about natural 
numbers 0,1,2,... (or more generally, about inductively defined 
objects) 

¨  They are very closely related 

¨  Induction can be used to establish the correctness and 
complexity of programs 



Defining Functions 
4 

¨  It is often useful to describe a function in different ways 
 
¤  Let  S : int → int  be the function where S(n) is the sum of 

the integers from 0 to n.  For example, 
              S(0) = 0            S(3) = 0+1+2+3 = 6 

 
¤ Definition: iterative form 

n  S(n) = 0+1+ … + n 
  
 = Σ	  i 

 
¤ Another characterization: closed form 

n  S(n) = n(n+1)/2 

n 
 

i=0 



Sum of Squares 
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¨  A more complex example 
¤  Let SQ : int → int be the function that gives the sum of the 

squares of integers from 0 to n: 
           SQ(0) = 0     
           SQ(3) = 02 + 12 + 22 + 32 = 14 

¨  Definition (iterative form):   
           SQ(n) = 02 + 12 + … + n2  

¨  Is there an equivalent closed-form expression? 



Closed-Form Expression for SQ(n) 
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¨  Sum of integers between 0 through n was n(n+1)/2 which is 
a quadratic in n (that is, O(n2)) 

¨  Inspired guess: perhaps sum of squares of  
integers between 0 through n is a cubic in n 

¨  Conjecture: SQ(n) = an3+bn2+cn+d  
where a, b, c, d are unknown coefficients 

¨  How can we find the values of the four unknowns? 
¤  Idea: Use any 4 values of n to generate 4 linear equations, and 

then solve 



Finding Coefficients 
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¨  Use  n = 0, 1, 2, 3 
¤  SQ(0) =   0  = a·∙0  + b·∙0 + c·∙0 + d  
¤  SQ(1) =   1  = a·∙1  + b·∙1 + c·∙1 + d  
¤  SQ(2) =   5  = a·∙8  + b·∙4 + c·∙2 + d  
¤  SQ(3) =  14  = a·∙27 + b·∙9 + c·∙3 + d 

¤  Solve these 4 equations to get 
n  a = 1/3      b = 1/2      c = 1/6      d = 0 

SQ(n) = 02+12+…+n2 = an3+bn2+cn+d  



Is the Formula Correct? 
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¨   This suggests 

          SQ(n) = 02 + 12 + … + n2  
                   = n3/3 + n2/2 + n/6 
                   = n(n+1)(2n+1)/6 

¨  Question: Is this closed-form solution true for all n? 
¤  Remember, we only used n = 0,1,2,3 to determine these 

coefficients 
¤ We do not know that the closed-form expression is valid 

for other values of n 



One Approach 
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¨  Try a few other values of n to see if they work. 
¤  Try n = 5:     SQ(n) = 0+1+4+9+16+25 = 55 
¤ Closed-form expression: 5·∙6·∙11/6 = 55 
¤ Works! 

¨  Try some more values… 

¨  We can never prove validity of the closed-form solution 
for all values of n this way, since there are an infinite 
number of values of n 



A Recursive Definition 
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¨  To solve this problem, let’s express SQ(n) in a different way: 
¤  SQ(n) =  02 + 12 + … + (n-1)2 + n2 

¤  The part in the box is just SQ(n-1) 

¨  This leads to the following recursive definition 
¤  SQ(0) = 0 
¤  SQ(n) = SQ(n-1) + n2,  n > 0 

¨  Thus,  
¤  SQ(4) = SQ(3) + 42 = SQ(2) + 32 + 42 = SQ(1) + 22 + 32 + 

42 = SQ(0) + 12 + 22 + 32 + 42 = 0 + 12 + 22 + 32 + 42 

Base Case 

Recursive Case 



Are These Two Functions Equal? 
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¨  SQr (r = recursive) 
 

  SQr(0) = 0 
  SQr(n) = SQr(n-1) + n2,   n > 0 

 
¨  SQc (c = closed-form) 

 
  SQc(n) = n(n+1)(2n+1)/6 



Induction over Integers 
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¨  To prove that some property P(n) holds for all integers 
n ≥ 0, 

1. Basis: Show that P(0) is true 
 

2.  Induction Step: Assuming that P(k) is true for an 
unspecified integer k, show that P(k+1) is true 

¨  Conclusion: Because we could have picked any k, we 
conclude that P(n) holds for all integers n ≥ 0 



Dominos 
13 

¨  Assume equally spaced dominos, and assume that spacing 
between dominos is less than domino length 

¨  How would you argue that all dominos would fall? 
¨  Dumb argument: 

¤  Domino 0 falls because we push it over 
¤  Domino 0 hits domino 1, therefore domino 1 falls 
¤  Domino 1 hits domino 2, therefore domino 2 falls 
¤  Domino 2 hits domino 3, therefore domino 3 falls 
¤  ... 

¨  Is there a more compact argument we can make? 

0 1 2 3 5 4 



Better Argument 
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¨  Argument: 
¤  Domino 0 falls because we push it over (Base Case or Basis) 
¤  Assume that domino k falls over (Induction Hypothesis) 
¤  Because domino k’s length is larger than inter-domino spacing, it 

will knock over domino k+1 (Inductive Step) 
¤  Because we could have picked any domino to be the kth one, we 

conclude that all dominos will fall over (Conclusion) 
¨  This is an inductive argument 
¨  This version is called weak induction 

¤  There is also strong induction (later) 
¨  Not only is this argument more compact, it works for an 

arbitrary number of dominoes! 



SQr(n) = SQc(n) for all n? 
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¨  Define P(n) as SQr(n)= SQc(n) 

¨  Prove P(0) 
¨  Assume P(k) for unspecified k, and then prove P(k+1) 

under this assumption 

P(1) P(2) P(k) P(k+1) 



Proof (by Induction) 
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¨    Recall:  SQr(0) = 0 
  SQr(n) = SQr(n-1) + n2,   n > 0 

 
  SQc(n) = n(n+1)(2n+1)/6 

¨  Let  P(n) be the proposition that SQr(n) = SQc(n) 
¨  Basis: P(0) holds because SQr(0) = 0 and SQc(0) = 0 by definition 
¨  Induction Hypothesis: Assume SQr(k) = SQc(k) 
¨  Inductive Step: 

SQr(k+1)  = SQr(k) + (k+1)2   by definition of SQr(k+1) 
  = SQc(k) + (k+1)2   by the Induction Hypothesis  

 = k(k+1)(2k+1)/6 + (k+1)2  by definition of SQc(k) 
 = (k+1)(k+2)(2k+3)/6  algebra 
 = SQc(k+1)   by definition of SQc(k+1) 

¨  Conclusion: SQr(n) = SQc(n) for all n ≥ 0 



Another Example 
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¨  Prove that 0+1+...+n = n(n+1)/2 

¨  Basis: Obviously holds for n = 0 
¨  Induction Hypothesis: Assume 0+1+…+k = k(k+1)/2 
¨  Inductive Step: 

0+1+…+(k+1)  = [0+1+…+k] + (k+1)  by def 
  = k(k+1)/2  +  (k+1)  by I.H. 
  = (k+1)(k+2)/2   algebra 

¨  Conclusion: 0+1+…+n = n(n+1)/2 for all n ≥ 0 



A Note on Base Cases  
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¨  Sometimes we are interested in showing some proposition is true for 
integers ≥ b 

¨  Intuition: we knock over domino b, and dominoes in front get 
knocked over; not interested in 0,1,…,(b − 1) 

¨  In general, the base case in induction does not have to be 0 
¨  If base case is some integer b 

¤  Induction proves the proposition for n = b, b+1, b+2, … 
¤  Does not say anything about n = 0,1,…,b − 1 

0 2 3 5 4 



Weak Induction: Nonzero Base Case 
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¨  Claim: You can make any amount of postage above 8¢ with 
some combination of 3¢ and 5¢ stamps 

¨  Basis: True for 8¢:  8 = 3 + 5 
¨  Induction Hypothesis: Suppose true for some k ≥ 8 
¨  Inductive Step: 

¤  If used a 5¢ stamp to make k, replace it by two 3¢ stamps.  Get k+1. 
¤  If did not use a 5¢ stamp to make k, must have used at least three 3¢ 

stamps.  Replace three 3¢ stamps by two 5¢ stamps.  Get k+1. 
¨  Conclusion: Any amount of postage above 8¢ can be made 

with some combination of 3¢ and 5¢ stamps 



What are the “Dominos”? 
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¨  In some problems, it can be tricky to determine how 
to set up the induction 

¨  This is particularly true for geometric problems that 
can be attacked using induction 



A Tiling Problem 
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¨  A chessboard has one square cut out of it 
¨  Can the remaining board be tiled using tiles of the shape 

shown in the picture (rotation allowed)? 

¨  Not obvious that we can use induction! 

8 

8 



Proof Outline 
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¨  Consider boards of size 2n x 2n  for n = 1,2,… 
¨  Basis: Show that tiling is possible for 2 x 2 board 
¨  Induction Hypothesis: Assume the 2k x 2k board can be 

tiled 
¨  Inductive Step: Using I.H. show that the 2k+1 x 2k+1 

board can be tiled 
¨  Conclusion: Any 2n x 2n board can be tiled, n = 1,2,… 

¤ Our chessboard (8 x 8) is a special case of this argument 
¤ We will have proven the 8 x 8 special case by solving a 

more general problem! 



Basis 
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¨  The 2 x 2 board can be tiled regardless of which 
one of the four pieces has been omitted  

2 x 2 board 



4 x 4 Case 
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¨  Divide the 4 x 4 board into four 2 x 2 sub-boards 
¨  One of the four sub-boards has the missing piece 

¤  By the I.H., that sub-board can be tiled since it is a 2 x 2 board with a missing piece 

¨  Tile center squares of three remaining sub-boards as shown 
¤  This leaves three 2 x 2 boards, each with a missing piece 

¤  We know these can be tiled by the Induction Hypothesis 



2k+1 x 2k+1 case 
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¨  Divide board into four sub-boards and tile the center squares 
of the three complete sub-boards 

¨  The remaining portions of the sub-boards can be tiled by the 
I.H. (which assumes we can tile 2k x 2k boards) 



When Induction Fails 
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¨  Sometimes an inductive proof strategy for some 
proposition may fail 

¨  This does not necessarily mean that the proposition is 
wrong 
¤  It may just mean that the particular inductive strategy you 

are using is the wrong choice 

¨  A different induction hypothesis (or a different proof 
strategy altogether) may succeed 



Tiling Example (Poor Strategy) 
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¨  Let’s try a different induction strategy 
¨  Proposition 

¤ Any n x n board with one missing square can be tiled 
¨  Problem 

¤ A 3 x 3 board with one missing square has 8 remaining 
squares, but our tile has 3 squares; tiling is impossible 

¨  Thus, any attempt to give an inductive proof of this 
proposition must fail 

¨  Note that this failed proof does not tell us anything 
about the 8x8 case 



A Seemingly Similar Tiling Problem 
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¨  A chessboard has opposite corners cut out of it.  Can the 
remaining board be tiled using tiles of the shape shown in the 
picture (rotation allowed)? 

¨  Induction fails here.  Why?  (Well…for one thing, this board 
can’t be tiled with dominos.) 

8 

8 



Strong Induction 
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¨  We want to prove that some property P holds for all n 
¨  Weak induction 

¤  P(0): Show that property P is true for 0 
¤  P(k) ⇒ P(k+1): Show that if property P is true for k, it is true for k+1 
¤  Conclude that P(n) holds for all n 

¨  Strong induction 
¤  P(0): Show that property P is true for 0 
¤  P(0) and P(1) and … and P(k) ⇒ P(k+1): show that if P is true for 

numbers less than or equal to k, it is true for k+1 
¤  Conclude that P(n) holds for all n 

¨  Both proof techniques are equally powerful 



Conclusion 
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¨  Induction is a powerful proof technique 

¨  Recursion is a powerful programming technique 

¨  Induction and recursion are closely related 
¤ We can use induction to prove correctness and 

complexity results about recursive programs 


