

Overview: Reasoning about Programs

\square Recursion
\square A programming strategy that solves a problem by reducing it to simpler or smaller instance(s) of the same problem
\square Induction
\square A mathematical strategy for proving statements about natural numbers $0,1,2, \ldots$ (or more generally, about inductively defined objects)
\square They are very closely related
\square Induction can be used to establish the correctness and complexity of programs

Overview: Reasoning about Programs

\square Our broad problem: code is unlikely to be correct if we don't have good reasons for believing it works
\square We need clear problem statements
\square And then a rigorous way to convince ourselves that what we wrote solves the problem
\square But reasoning about programs can be hard
\square Especially with recursion, concurrency
\square Today focus on recursion

Defining Functions

\square It is often useful to describe a function in different ways
\square Let $S:$ int \rightarrow int be the function where $S(n)$ is the sum of the integers from 0 to n . For example,

$$
S(0)=0 \quad S(3)=0+1+2+3=6
$$

- Definition: iterative form
$\square S(n)=0+1+\ldots+n$

$$
=\sum_{i=0}^{n} i
$$

\square Another characterization: closed form $-S(n)=n(n+1) / 2$

Closed-Form Expression for $\mathrm{SQ}(\mathrm{n})$

Sum of Squares

\square A more complex example
\square Let $S Q:$ int \rightarrow int be the function that gives the sum of the squares of integers from 0 to n :
$S Q(0)=0$

$$
S Q(3)=0^{2}+1^{2}+2^{2}+3^{2}=14
$$

\square Definition (iterative form):

$$
S Q(n)=0^{2}+1^{2}+\ldots+n^{2}
$$

\square Is there an equivalent closed-form expression?
\square Sum of integers between 0 through n was $n(n+1) / 2$ which is a quadratic in n (that is, $O\left(n^{2}\right)$)
\square Inspired guess: perhaps sum of squares of integers between 0 through n is a cubic in n
\square Conjecture: $S Q(n)=a n^{3}+b n^{2}+c n+d$
where a, b, c, d are unknown coefficients
\square How can we find the values of the four unknowns?
I Idea: Use any 4 values of n to generate 4 linear equations, and then solve

Finding Coefficients

$S Q(n)=0^{2}+1^{2}+\ldots+n^{2}=a n^{3}+b n^{2}+c n+d$

$$
\begin{aligned}
& \square \text { Use } n=0,1,2,3 \\
& \square S Q(0)=0 \quad=a \cdot 0+b \cdot 0+c \cdot 0+d \\
& \square S Q(1)=1 \quad=a \cdot 1+b \cdot 1+c \cdot 1+d \\
& \square S Q(2)=5 \quad=a \cdot 8+b \cdot 4+c \cdot 2+d \\
& \square S Q(3)=14 \quad=a \cdot 27+b \cdot 9+c \cdot 3+d \\
& \square \text { Solve these } 4 \text { equations to get } \\
& \square a=1 / 3 \quad b=1 / 2 \quad c=1 / 6 \quad d=0
\end{aligned}
$$

Is the Formula Correct?
\square This suggests

$$
\begin{aligned}
S Q(n) & =0^{2}+1^{2}+\ldots+n^{2} \\
& =n^{3} / 3+n^{2} / 2+n / 6 \\
& =n(n+1)(2 n+1) / 6
\end{aligned}
$$

Question: Is this closed-form solution true for all n ?
\square Remember, we only used $n=0,1,2,3$ to determine these coefficients

- We do not know that the closed-form expression is valid for other values of n

A Recursive Definition

\square To solve this problem, let's express $S Q(n)$ in a different way: $\square S Q(\mathrm{n})=0^{2}+1^{2}+\ldots+(n-1)^{2}+n^{2}$

- The part in the box is just $S Q(n-1)$
\square This leads to the following recursive definition
$\square S Q(0)=0 \longleftarrow$ Base Case
$\square S Q(n)=S Q(n-1)+n^{2}, n>0 \longleftarrow$ Recursive Case
\square Thus,
$\square \mathrm{SQ}(4)=\mathrm{SQ}(3)+4^{2}=\mathrm{SQ}(2)+3^{2}+4^{2}=\mathrm{SQ}(1)+2^{2}+3^{2}+$ $4^{2}=S Q(0)+1^{2}+2^{2}+3^{2}+4^{2}=0+1^{2}+2^{2}+3^{2}+4^{2}$

Induction over Integers

\square To prove that some property $\mathrm{P}(\mathrm{n})$ holds for all integers $n \geq 0$,

1. Basis: Show that $P(0)$ is true
2. Induction Step: Assuming that $\mathrm{P}(\mathrm{k})$ is true for an unspecified integer k, show that $P(k+1)$ is true
\square Conclusion: Because we could have picked any k, we conclude that $P(n)$ holds for all integers $n \geq 0$

$$
S Q_{r}(n)=S Q_{c}(n) \text { for all } n \text { ? }
$$

\square Define $P(n)$ as $S Q_{r}(n)=S Q_{c}(n)$

\square Prove $\mathrm{P}(0)$
\square Assume $P(k)$ for unspecified k, and then prove $P(k+1)$ under this assumption

Better Argument

\square Argument:

- Domino 0 falls because we push it over (Base Case or Basis)
- Assume that domino k falls over (Induction Hypothesis)
- Because domino k's length is larger than inter-domino spacing, it will knock over domino $\mathrm{k}+1$ (Inductive Step)
- Because we could have picked any domino to be the $\mathrm{k}^{\text {th }}$ one, we conclude that all dominos will fall over (Conclusion)
\square This is an inductive argument
\square This version is called weak induction
- There is also strong induction (later)
\square Not only is this argument more compact, it works for an arbitrary number of dominoes!

Another Example

$$
\begin{aligned}
& \square \text { Prove that } 0+1+\ldots+n=n(n+1) / 2 \\
& \text { Basis: Obviously holds for } n=0 \\
& \text { Induction Hypothesis: Assume } 0+1+\ldots+k=k(k+1) / 2
\end{aligned} \begin{array}{rll}
\\
\begin{array}{rll}
0+1+\ldots+(k+1) & =[0+1+\ldots+k]+(k+1) & \text { by def } \\
& =k(k+1) / 2+(k+1) & \text { by I.H. } \\
& =(k+1)(k+2) / 2 & \text { algebra }
\end{array}
\end{array}
$$

\square Conclusion: $0+1+\ldots+n=n(n+1) / 2$ for all $n \geq 0$

Proof (by Induction)

```
R Recall: SQ, (0)=0
                                    SQ}(n)=S\mp@subsup{Q}{r}{\prime}(n-1)+\mp@subsup{n}{}{2},n>
            SQ(n)=n(n+1)(2n+1)/6
- Let P(n) be the proposition that S\mp@subsup{Q}{r}{\prime}(n)=S\mp@subsup{Q}{c}{}(n)
\square Basis: P(0) holds because SQ (0)=0 and SQ ( }0\mathrm{ ) =0 by definition
- Induction Hypothesis: Assume SQ(k)=S\mp@subsup{Q}{c}{(k)}
- Inductive Step:
    SQ(k+1) }=S\mp@subsup{Q}{r}{\prime}(k)+(k+1)
            SQQ}(k)+(k+1\mp@subsup{)}{}{2}\quad\mathrm{ by the Induction Hypothesi
            k(k+1)(2k+1)(6+(k+1) by by induction Hypothes
            =k(k+1)(2k+1)/Q+(k+1\mp@subsup{)}{}{2}}\mathrm{ by definition of SQ_(k)
            =(k+1)(k+2)(2k+3)/6 }\begin{array}{ll}{\mathrm{ algebra ( by definition of SQ (k+1)}}\\{=S\mp@subsup{Q}{c}{}(k+1)}&{}
- Conclusion: SQ (n)=S\mp@subsup{Q}{c}{\prime}(n)\mathrm{ for all n & 0}
```


Weak Induction: Nonzero Base Case

Claim: You can make any amount of postage above 8ϕ with some combination of 3ϕ and 5ϕ stamps

- Basis: True for 8ϕ : $8=3+5$
- Induction Hypothesis: Suppose true for some $\mathrm{k} \geq 8$
- Inductive Step:
- If used a $5 ¢$ stamp to make k, replace it by two $3 ¢$ stamps. Get $k+1$.
- If did not use a 5ϕ stamp to make k, must have used at least three 3ϕ stamps. Replace three 3ϕ stamps by two 5ϕ stamps. Get $\mathrm{k}+1$.
- Conclusion: Any amount of postage above $8 \not \subset$ can be made with some combination of 3ϕ and 5ϕ stamps

A Tiling Problem

\square A chessboard has one square cut out of it
\square Can the remaining board be tiled using tiles of the shape shown in the picture (rotation allowed)?
\square Not obvious that we can use induction!

4×4 Case

$$
\text { Divide the } 4 \times 4 \text { board into four } 2 \times 2 \text { sub-boards }
$$

\square One of the four sub-boards has the missing piece

- By the l.t., that sub-board can be tiled since it is a 2×2 board with a missing piece
\square Tile center squares of three remaining sub-boards as shown
- This leaves three 2×2 boards, each with a missing piece

We know these can be tiled by the Induction Hypothesis

$$
2^{\mathrm{k}+1} \times 2^{\mathrm{k}+1} \text { case }
$$

- Divide board into four sub-boards and tile the center squares of the three complete sub-boards
- The remaining portions of the sub-boards can be tiled by the I.H. (which assumes we can tile $2^{k} \times 2^{k}$ boards)

Tiling Example (Poor Strategy)

\square Let's try a different induction strategy
\square Proposition
\square Any $\mathrm{n} \times \mathrm{n}$ board with one missing square can be tiled
\square Problem

- A 3×3 board with one missing square has 8 remaining squares, but our tile has 3 squares; tiling is impossible
\square Thus, any attempt to give an inductive proof of this proposition must fail
\square Note that this failed proof does not tell us anything about the 8×8 case

Strong Induction

\square We want to prove that some property P holds for all n
Weak induction

- $P(0)$: Show that property P is true for 0

ㅁ $P(k) \Rightarrow P(k+1)$: Show that if property P is true for k, it is true for $k+1$

- Conclude that $\mathrm{P}(\mathrm{n})$ holds for all n
\square Strong induction
- $\mathrm{P}(0)$: Show that property P is true for 0
- $P(0)$ and $P(1)$ and \ldots and $P(k) \Rightarrow P(k+1)$: show that if P is true for numbers less than or equal to k , it is true for $\mathrm{k}+1$
- Conclude that $\mathrm{P}(\mathrm{n})$ holds for all n
- Both proof techniques are equally powerful

When Induction Fails

Sometimes an inductive proof strategy for some proposition may fail
\square This does not necessarily mean that the proposition is wrong

- It may just mean that the particular inductive strategy you are using is the wrong choice
\square A different induction hypothesis (or a different proof strategy altogether) may succeed

A Seemingly Similar Tiling Problem

\square A chessboard has opposite corners cut out of it. Can the remaining board be tiled using tiles of the shape shown in the picture (rotation allowed)?
\square Induction fails here. Why? (Well...for one thing, this board can't be tiled with dominos.)

Conclusion

