

Announcements

\square Prelim 2: Two and a half weeks from now
-Tuesday, Aprill 6, 7:30-9pm, Statler

\square Exam conflicts?

\square We need to hear about them and can arrange a makeup

- It would be the same day but 5:30-7:00
\square Old exams available on the course website

These are not Graphs

not the kind we mean, anyway

These are Graphs

Applications of Graphs

```
\squareCommunication networks
Routing and shortest path problems
\squareCommodity distribution (flow)
Traffic control
Resource allocation
\square \text { Geometric modeling}
```

node
\square An element of E is called an edge or arc
$\square|V|=$ size of V, often denoted n
$\square|E|=$ size of E, often denoted m
Example Directed Graph (Digraph)

Some Graph Terminology

Vertices u and v are called the source and sink of the directed edge (u, v), respectively

- Vertices u and v are called the endpoints of (u, v)
- Two vertices are adjacent if they are connected by an edge
- The outdegree of a vertex u in a directed graph is the number of edges for which u is the source
- The indegree of a vertex v in a directed graph is the number of edges for which v is the sink
- The degree of a vertex u in an undirected graph is the number of edges of which u is an endpoint

Is This a Dag?

\square Intuition:
\square If it's a dag, there must be a vertex with indegree zero - why?
\square This idea leads to an algorithm
\square A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

Example Undirected Graph

An undirected graph is just like a directed graph, except the edges are unordered pairs (sets) $\{\mathrm{u}, \mathrm{v}\}$

Example:

$V=\{a, b, c, d, e, f\}$
$E=\{\{a, b\},\{a, c\},\{a, e\},\{b, c\},\{b, d\},\{b, e\},\{c, d\},\{c, f\}$, \{d,e\}, \{d,f\}, \{e,f\}\}

More Graph Terminology
 $\xrightarrow{\mathrm{v}_{0}-} \xrightarrow{\circ}{ }^{\mathrm{v}_{5}}$

\square A path is a sequence $v_{0}, v_{1}, v_{2}, \ldots, v_{p}$ of vertices such that $\left(v_{i}, v_{i+1}\right) \in E, 0 \leq i \leq p-1$
\square The length of a path is its number of edges \square In this example, the length is 5
\square A path is simple if it does not repeat any vertices
\square A cycle is a path $v_{0}, v_{1}, v_{2}, \ldots, v_{p}$ such that $v_{0}=v_{p}$
\square A cycle is simple if it does not repeat any vertices except the first and last
\square A graph is acyclic if it has no cycles
\square A directed acyclic graph is called a dag ${ }^{\text {a }}$

Is This a Dag?

\square Intuition:

- If it's a dag, there must be a vertex with indegree zero - why?
\square This idea leads to an algorithm
- A digraph is a dag if and only if we can iteratively delete indegree- 0 vertices until the graph disappears

Is This a Dag?
(14)
\square Intuition:
\square If it's a dag, there must be a vertex with indegree zero - why?
\square This idea leads to an algorithm
\square A digraph is a dag if and only if we can iteratively delete indegree- 0 vertices until the graph disappears
Is This a Dag?

\quad| \square Intuition: |
| ---: |
| \quad If it's a dag, there must be a vertex with indegree zero |
| \square A digraph is a dag if and only if we can iteratively |
| delete indegree-0 vertices until the graph disappears |

Is This a Dag?

\quad| \square Intuition: |
| ---: |
| \quad - why? it's a dag, there must be a vertex with indegree zero |
| \square |
| \quad This idea leads to an algorithm |
| \quad delete indegree-0 vertices until the graph disappears |

Is This a Dag?
\square

\square Intuition:

- If it's a dag, there must be a vertex with indegree zero - why?
\square This idea leads to an algorithm
- A digraph is a dag if and only if we can iteratively delete indegree- 0 vertices until the graph disappears

Topological Sort

\square We just computed a topological sort of the dag

- This is a numbering of the vertices such that all edges go from lower- to higher-numbered vertices

Useful in job scheduling with precedence constraints

Planarity

A graph is planar if it can be embedded in the plane with no edges crossing

\square Is this graph planar?
\square Yes

Planarity

\square A graph is planar if it can be embedded in the plane with no edges crossing

\square Is this graph planar?

Planarity

\square A graph is planar if it can be embedded in the plane with no edges crossing

\square Is this graph planar?

- Yes

The Four-Color Theorem

Traveling Salesperson

\square Find a path of minimum distance that visits every city

Adjacency Matrix or Adjacency List?

$\square \mathrm{n}=$ number of vertices	
$\square \mathrm{m}=$ number of edges	- Adjacency List
$\square d(u)=$ degree of $u=$ number of edges leaving	- Can iterate over all edges in time $\mathrm{O}(\mathrm{m}+\mathrm{n})$
$u \quad$	- Can answer "Is there an edge from u to v?" in O(d(u)) time
\square Adjacency Matrix	- Better for sparse graphs (fewer edges)
\square Uses space $O\left(\mathrm{n}^{2}\right)$	
\square Can iterate over all edges in time $\mathrm{O}\left(\mathrm{n}^{2}\right)$	
\square Can answer "Is there an edge from u to v ?" in $\mathrm{O}(1)$ time	
\square Better for dense graphs (lots of edges)	

$\square \mathrm{n}=$ number of vertices
$\square \mathrm{m}=$ number of edges
) degree of $u=$ number of edges leaving

Adjacency Matrix
\square Uses space $O\left(n^{2}\right)$
$\mathrm{O}\left(\mathrm{n}^{2}\right)$
Can answer "Is there an edge from u
\square Better for

Uses space $O(m+n)$

- Can iterate over all edges in time $\mathrm{O}(\mathrm{m}+\mathrm{n})$
- Can answer "Is there an edge from
- Better for sparse graphs (fewer edges)

Representations of Graphs

Adjacency List Adjacency Matrix

Graph Algorithms

- Search
- depth-first search
- breadth-first search
- Shortest paths
- Dijkstra's algorithm
- Minimum spanning trees
- Prim's algorithm
- Kruskal's algorithm

Depth-First Search
- Follow edges depth-first starting from an
arbitrary vertex r, using a stack to remember
where you came from
- When you encounter a vertex previously
visited, or there are no outgoing edges,
retreat and try another path
- Eventually visit all vertices reachable from r
- I there are still unvisited vertices, repeat
- $O(m)$ time

Depth-First Search

Depth-First Search

Depth-First Search

Breadth-First Search
Same, except use a queve instead of a stack to
determine which edge to explore next
\square Recall: A stack is last-in, first-out (LIFO)
\square A queve is first-in, first-out (FIFO)

